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Summary 

 

In order to provide a comparison to the established stock assessment for Patagonian 

toothfish (Dissostichus eleginoides), we apply two data-poor stock assessment approaches to 

the available toothfish data, and compare the results to the CASAL stock assessment model. 

The two approaches tested are JABBA (Just Another Bayesian Biomass Assessment; Winker 

et al. 2018) and LBB (Length-based Bayesian Biomass estimation; Froese et al. 2018). 

JABBA uses only catch data from each fishing fleet, while LBB uses only length frequency 

data. Both are Bayesian-based approaches that differ substantially with the CASAL model in 

the data required and the underlying formulation of the model. 

The outputs from the JABBA model were stable over different model 

parameterizations, and paralleled the findings of the CASAL stock assessment. It found that 

the toothfish stock biomass is currently close to the biomass at maximum sustainable yield 

(BMSY), and that the MSY is between 1,300 and 1,500 t. If future catches of toothfish remain 

below 1,500 t per year, the JABBA model projects that the biomass would not get depleted 

over time. Interpreting the outputs of the LBB model was more difficult, as this model 

depends solely on length frequency data, and rests on the assumption that length is an 

accurate proxy for age. Therefore, the segment of the population that is targeted by the 

longline fishery is not properly modelled by LBB, and this method is mostly useful to get an 

understanding of the trawl-caught segment of the population, which are younger and grow 

continuously on the Patagonian shelf. The LBB model suggests that the toothfish bycatch in 

the trawl fisheries has driven down the population of toothfish. Given the insight these 

alternative models provide, we recommend that JABBA and LBB models be run every year 

in parallel with the primary CASAL stock assessment model. 

 

Introduction 

 

A commercial longline fishery targeting Patagonian toothfish has been operating in 

Falkland Islands waters since 1992, and specifically licensed since 1995 (des Clers et al. 

1996, Laptikhovsky and Brickle 2005). Management of the fishery has relied on an aged-

structured production model implemented using CASAL (Bull et al. 2012) since 2012. This 

model integrates many data sources and provides useful outputs for the management of the 

species. The current stock assessment of Falkland Islands toothfish calculated toothfish total 

biomass of 31,891 tonnes and spawning stock biomass of 11,293 tonnes in 2017. The ratio of 

SSB2017:SSB0 (current spawning stock biomass to unfished spawning stock biomass) was 

0.482. Maximum sustainable yield (MSY) was estimated by the stock assessment model at 

1,932 tonnes. 

Important quantities of toothfish are also caught in two other Falklands fisheries: finfish 

trawl, of which toothfish is not a target but commercially valuable bycatch, and Loligo 

calamari (Doryteuthis gahi) squid trawl, of which toothfish is also bycatch, but individuals 

caught in this fishery are usually too small to be commercially valuable. The fisheries access 

different parts of the toothfish population in different areas: longlining occurs on the slope 

and in deep water, finfish trawling on the shelf primarily north and west of the Falkland 

Islands, and calamari trawling also on the shelf, east of the Falkland Islands (Figure 1). 

CASAL has become the standard approach to determining the status of toothfish in the 

southern oceans (Hillary et al., 2006; Dunn and Hanchet, 2010). However, as has been 

recently pointed out during both the Marine Stewardship Council (MSC) recertification 

process (Acoura, 2018) and the external review of the toothfish fishery (Bergh, 2018), 

examining alternative approaches to stock assessment models is part of the best practices in 

resource management. Alternative model structures can provide a check on the assumptions 
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of the CASAL model, and increase confidence in the outputs of the primary stock 

assessment. On the other hand, drastically different results with alternative models can 

prompt managers to re-evaluate their model assumptions. In addition, the toothfish stock 

assessment model using CASAL is one of the most data-intensive models used by the 

Falkland Islands Fisheries Department (FIFD). Therefore, comparing this approach to more 

data-poor approaches for toothfish may provide insight into the usefulness of these data-poor 

approaches for other species/stocks managed by FIFD. 

In this report, we apply two data-poor stock assessment approaches to the available 

toothfish data, and compare the results to the CASAL stock assessment model. The two 

approaches tested are JABBA (Just Another Bayesian Biomass Assessment; Winker et al. 

2018) and LBB (Length-based Bayesian Biomass estimation; Froese et al. 2018). JABBA 

uses only catch data from each fishing fleet, while LBB uses only length frequency data. 

Both are Bayesian-based approaches that differ substantially with the CASAL model in the 

data required and the underlying formulation of the model. We hypothesize that the outputs 

of these two alternative approaches will show the same general status and historical trends as 

the CASAL model, although we expect these data-poor approaches to provide less 

sophisticated and nuanced results as the data requirements are substantially simpler. 

 

 

 

 
Figure 1. Length frequency of all toothfish measured from different fisheries. In the 

legend, years denote years for which length data was available, and sample size is the total 

number of individuals measured across those years. Inset map shows the geographic location 

of the length measurements, by fishery type. 
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Methods 

 

The two alternative stock assessment models were constructed using subsets of the data 

on which the CASAL model is based. The JABBA and LBB model frameworks each employ 

different portions of the overall available data, as they represent two different approaches. 

Both are open-source, R-based, Bayesian frameworks, and are useful for data-poor situations. 

As a surplus production model, JABBA uses state-space Bayesian modelling to 

estimate changes in biomass as a function of previous biomass and the removal of biomass 

through fishing. The data used included the overall annual catch of toothfish in the zone 

(1987 – 2018), catch per unit effort (CPUE) of toothfish in the finfish (FIN) and squid (LOL) 

trawl fisheries calculated as the toothfish catch divided by the number of vessel days (FIN: 

1987 – 2018, LOL: 1989 – 2018), and the annual CPUE index for the longline fishery that 

was calculated by the CPUE standardization of the CASAL model (Farrugia and Winter, 

2018) along with the standard errors associated with those indices (1996 – 2018). The 

longline fishery was further divided into the Spanish longline gear (LLH, 1996 – 2007 and 

2013) and the umbrella gear (LLU, 2007 - 2018). Three runs of the JABBA model were 

produced: 1) including catch and CPUE data from all fisheries, 2) including catch and CPUE 

data from the longline fisheries only (LLH and LLU), and 3) including only longline fisheries 

with standard errors for the CPUE. For each run, the model was run with three different 

surplus production functions (Fox, Schaefer, and Pella-Tomlinson functions). These functions 

all use the same basic surplus production equation, but take different approaches to setting 

the shape parameter of the biomass depletion ratio (Winker et al., 2018). Therefore, in total 

there were 9 sets of outputs for the JABBA model (three runs with three production functions 

each). For further details on parameter specifications, see R script in Appendix. 

On the other hand, LBB uses catch-at-length data to estimate mortality rates relative to 

somatic growth, and subsequently exploited biomass relative to unexploited biomass. For the 

LBB model, the only data used were the length frequencies of toothfish across all years (1987 

– 2018) and fisheries (LLU, LLH, FIN, LOL). Because the different fisheries target different 

segments of the toothfish population (Figure 1), the model was run separately for the FIN, 

LOL and LLU/LLH fisheries. Years with very few length frequencies (less than 30), were not 

included in the analyses. In addition, because the longline gear changed substantially in 2007 

(from a Spanish longline system to the umbrella system, Brown et al., 2010), the LBB model 

was run with data from all longline gear (LL), and with data from only the umbrella gear 

(LLU). For further details on parameter specifications, see R script in Appendix. 

Outputs from both models were consolidated and compared to the outputs of the 

CASAL model. Specifically, metrics on the stock status (e.g. B/Bmsy, F/Fmsy) and 

sustainable fishing pressure (e.g. MSY, resilience) were compared when more than one 

modelling approached yielded estimates of the parameter of interest. Trends in estimated 

spawning stock biomass and fishing mortality were also compared across models.  

 

Results 

JABBA 

The three different runs of the JABBA model yielded similar estimates for all model 

outputs (Table 1). Most notably, the estimates of maximum sustainable yield (MSY) ranged 

narrowly between 1,330 and 1,463 t. Given these similarities, we chose to present the results 

from the Pella-Tomlinson model from the third model run (which included CPUE data from 

longlines only, along with the standard error of the CPUE estimate). The outputs from the 

other model runs were very similar and would not lead to different conclusions. 

The change in biomass estimated by the JABBA model shows that there has been an 

approximately 50% decrease in the stock biomass since the beginning of the fishery (Figure 
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2). Currently, the biomass is estimated to be slightly below the biomass at MSY (BMSY), 

although the 95% confidence interval includes the BMSY estimate. The largest biomass 

decrease happened in the 1990s, at the beginning of the fishery and when there was 

considerable illegal, unregulated and unreported (IUU) catch of toothfish in the southwest 

Atlantic. Since 2005, when the ITQ system began and a total allowable catch was imposed, 

the biomass trend has levelled. 

 

Table 1. Summary of posterior estimates (medians) and 95% Bayesian credibility 

intervals of parameters for all three model runs, and for each production functions. 

1
st
 M

o
d

el
 R

u
n

 

 Schaefer Fox Pella-Tomlinson 

 Median 2.5% 97.5% Median 2.5% 97.5% Median 2.5% 97.5% 

K (t) 24,664 14,750 50,591 22,952 14,844 42,560 22,341 14,411 41,712 

r 0.233 0.090 0.440 0.177 0.084 0.313 0.195 0.088 0.332 

φ 0.726 0.478 1.001 0.704 0.439 0.989 0.703 0.454 0.981 

σ 0.055 0.032 0.089 0.055 0.032 0.089 0.055 0.032 0.089 

FMSY 0.116 0.045 0.220 0.177 0.084 0.313 0.164 0.074 0.280 

BMSY 12,332 7,375 25,296 8,448 5,463 15,665 8,936 5,764 16,684 

MSY (t) 1,446 951 1,833 1,463 1,112 2,612 1,462 1,077 1,881 

B/BMSY 0.809 0.495 1.300 0.953 0.540 2.098 0.911 0.559 1.532 

F/FMSY 1.108 0.570 2.190 0.926 0.235 1.736 0.970 0.456 1.703 

2
n
d
 M

o
d

el
 R

u
n
 

 Schaefer Fox Pella-Tomlinson 

 Median 2.5% 97.5% Median 2.5% 97.5% Median 2.5% 97.5% 

K (t) 28,230 15,619 55,381 25,004 16,182 44,907 26,150 14,474 48,827 

r 0.186 0.072 0.405 0.147 0.067 0.256 0.152 0.063 0.322 

φ 0.850 0.614 1.023 0.888 0.664 1.027 0.826 0.589 1.022 

σ 0.055 0.032 0.089 0.055 0.032 0.089 0.055 0.032 0.089 

FMSY 0.093 0.036 0.203 0.147 0.067 0.255 0.128 0.053 0.271 

BMSY 14,115 7,810 27,690 9,203 5,956 16,529 10,459 5,789 19,530 

MSY (t) 1,330 846 1,714 1,355 966 1,740 1,344 903 1,746 

B/BMSY 0.643 0.393 1.036 0.803 0.460 1.452 0.704 0.414 1.278 

F/FMSY 1.506 0.792 2.954 1.189 0.529 2.235 1.364 0.603 2.611 

3
rd

 M
o

d
el

 R
u

n
 

 Schaefer Fox Pella-Tomlinson 

 Median 2.5% 97.5% Median 2.5% 97.5% Median 2.5% 97.5% 

K (t) 31,071 17,696 61,618 24,785 15,804 45,084 25,398 16,505 48,611 

r 0.179 0.069 0.364 0.156 0.068 0.280 0.164 0.069 0.288 

φ 0.857 0.625 1.028 0.917 0.638 1.030 0.872 0.568 1.026 

σ 0.045 0.032 0.084 0.045 0.032 0.084 0.045 0.032 0.084 

FMSY 0.089 0.035 0.182 0.156 0.068 0.280 0.138 0.058 0.242 

BMSY 15,535 8,848 30,809 9,123 5,817 16,594 10,159 6,602 19,444 

MSY (t) 1,378 840 2,267 1,422 999 1,911 1,402 970 1,855 

B/BMSY 0.844 0.491 1.538 0.992 0.569 1.633 0.914 0.547 1.497 

F/FMSY 1.130 0.377 2.461 0.921 0.413 1.839 1.009 0.465 1.962 

K: unfished biomass, r: resilience, φ: initial depletion (B1987/K), σ: process variance 

 

According to the outputs of the JABBA model, the early 2000s saw several years of 

overfishing (Figure 3), as the biomass was being drawn down. Currently, the stock seems to 

be very close to BMSY, and surplus production close to its maximum. There is little evidence 

that the stock is currently undergoing overfishing (catch has been at or below MSY in recent 

years, Figure 3), and the model suggests that the stock has remained in the same general 

region of the surplus-production phase plot in the last 10 years (Figure 3). 

Another way to examine the changes in the stock status over time is through a Kobe 

plot (Figure 4). In this case, the overfished (B/BMSY) and overfishing (F/FMSY) status of the 

stock through time shows that starting in the year 2000, the stock was undergoing 

overfishing, and by 2007, the stock was overfished. Since then, the stock has remained fairly 

stable, and overfishing does not seem to be a concern. 
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Figure 2. Estimated trajectory of the toothfish stock biomass (black line) with 95% 

confidence interval (grey shading). Horizontal dashed line represents the estimated BMSY. 

This is the output for the Pella-Tomlinson model of the 3
rd

 run. 

 

 
Figure 3. Surplus-production phase plot, showing estimated surplus production curve 

(blue line), catch/biomass trajectory (black line and dots). Background plot is divided by 

the vertical BMSY line (short-dashed line) and horizontal MSY line (long-dashed line) with 

95% credibility interval (shaded area). First year (1987), last year (2018) and ten year 

previous (2009) are marked with white symbols. 

 

Finally, the model offers projection estimates of the future biomass of the stock under 

different catch scenarios (Figure 5). The projections show that total catches of 1,250 t or 

below seem to be sustainable for the next 20 years. In other words, with an annual catch of 

1,250 t or below, the biomass (and therefore the biomass relative to the carrying capacity 

B/K) will increase. The lower the annual catch, the faster this increase will be. However, 
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catches of 1,500 t or above would lead to a decrease in biomass (Figure 5). The total catch of 

toothfish over the last 10 years has fluctuated between 1,233 and 1,564 t (mean = 1,395 t). 

Therefore, according to the JABBA model, the stock is being fully utilized and close 

monitoring should continue in order to ensure that overfishing does not take place. 

 

 
Figure 4. Kobe phase plot showing the estimated trajectory of B/BMSY – F/FMSY of 

the toothfish stock (black line). Grey shaded areas denote the 50, 80, and 95% credibility 

interval (from light to dark) for the last assessment year (2018). The probability of the last 

year falling within each quadrant is indicated with percentages. 

 

 
Figure 5. Projections of the toothfish biomass over a sequence of future catches (500 to 

3,000 t a year) with 95% credible intervals. Credible intervals for each projection are 

denoted in increasingly darker shades of grey. Dashed line denotes BMSY. 
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LBB 

The LBB model was initially run on all available length frequency data simultaneously. 

However, it became apparent that because of the different fisheries targeting very different 

segments of the toothfish population (Figure 1), the model outputs were erratic and difficult 

to interpret. However, when the data was divided between the longline fishery, the finfish 

trawl fishery and the Loligo trawl fishery, more useful outputs were produced. 

As expected, the three model runs using data from longline, finfish trawl, and Loligo 

trawl, respectively, produced markedly different outputs (Table 2). Asymptotic fish length, 

length at first capture, and the length at which unexploited cohort biomass is maximum was 

highest for the longline fishery, and smallest for toothfish caught in the Loligo trawl fishery. 

About 65% of the toothfish caught in the longline fishery were estimated to be mature by the 

model (based on length at maturity inputs), while none were mature in the two trawl fisheries. 

The relative index of yield-per-recruit (Y’/R) was highest in the longline fishery, and lowest 

in the Loligo trawl fishery, in line with the pattern of length frequencies encountered in these 

fisheries.  

The most useful LBB parameter outputs for determining the status of the stock are the 

fishing mortality, biomass to virgin biomass ratio (B/B0), and biomass to biomass at MSY 

ratio (B/BMSY). The index for fishing mortality that is produced by the LBB model is a 

relative index to natural mortality (F/M). It is highest in the finfish trawl fishery, where the 

fishing mortality was estimated to be 3.69 times higher than the natural mortality. Fishing 

intensity was lowest in the Loligo trawl fishery (2.73), which could be explained by the high 

natural mortality experienced by very small toothfish typically caught in that fishery (around 

29 cm). In the longline fishery, the LBB model estimated a rather high F/M ratio of 3.39, 

although this may not be surprising as this fishery targets large toothfish which are long-lived 

and have low natural mortality. For both biomass ratios (B/B0 and B/BMSY), the longline 

fishery had the highest estimated value (0.2 and 0.56, respectively), followed by the finfish 

trawl fishery (0.12 and 0.33, respectively), with the Loligo fishery at the lowest biomass level 

(0.081 and 0.21, respectively). This suggests that the longline fishery has had less effect on 

the oldest segment of the toothfish population than the finfish and Loligo fishery has had on 

the younger segment of the stock (Table 2). 

 

Table 2. LBB model outputs (with 95% confidence limits) for the model runs on the 

three fisheries.  

 Longline – Umbrella Finfish Trawl Loligo Trawl 

Year range 2008 – 2018 1988 – 2018 2003 – 2018 

Sample size 1,292 1,150 837 

Linf (cm) 214 (210 – 218) 125 (123 – 128) 97.2 (95.4 – 98.7) 

Lc (cm) 93.2 (92.5 – 94.2) 34 (33.8 – 34.2) 29.3 (29.2 – 29.4) 

Lopt (cm) 141 87 71 

Percent Maturity 65% 0% 0% 

Current Y’/R 0.032 (0.020 – 0.044) 0.021 (0.014 – 0.031) 0.011 (0.007 – 0.015) 

F/M 3.39 (2.77 – 4.12) 3.69 (3.04 – 4.96) 2.73 (2.13 – 3.52) 

Current B/B0 0.2 (0.127 – 0.285) 0.12 (0.080 – 0.183) 0.081 (0.0557 – 0.109) 

Current B/BMSY 0.56 (0.349 – 0.782) 0.33 (0.215 – 0.49) 0.21 (0.145 – 0.284) 

Linf: asymptotic length, Lc: length at first capture, Lopt: length at which unexploited cohort 

biomass is maximum, Y’/R: relative yield per recruit (Beverton and Holt, 1966) 

 

The toothfish caught in the longline fishery have a very narrow and constant length 

frequency distribution (Figure 6). The distribution is usually centred on 100 cm, and hasn’t 

changed much between 2008 and 2018. Since 2008, the mean length at capture (Lmean) has 
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remained constant just above 100 cm, and is about 40 cm below the length of the unfished 

population, Lopt (Figure 6). Similarly, the length at first capture Lc has been almost 50 cm 

below the optimum selectivity length Lc_opt. This suggests that there may growth-overfishing 

taking place in this fishery (i.e. harvest happens at a size that is smaller than the size that 

would produce maximum yield per recruit; Diekert, 2012). Both the trendline of the F/M and 

B/B0 ratios show that there has been overfishing and the stock was overfished in the past, but 

that the situation is improving (Figure 6). 

 

 
Figure 6. LBB model outputs for the umbrella longline fishery (LLU). The upper left 

panel shows the accumulated length frequency data used. The upper middle and right panels 

show the length frequency data for the first and last year in the time series, respectively. The 

lower left panel shows mean length in the exploited population, Lmean (bold curve) relative to 

the length in the unfished population, Lopt (solid green line) and the length at first capture, Lc 

(dashed curve) relative to the optimum selectivity length, Lc_opt (dashed green line). The 

lower middle panel shows the relative fishing pressure (F/M) with 95% confidence limits. 

The lower right panel shows the relative biomass (B/B0) with 95% confidence limits with a 

proxy for BMSY (green dashed line) and a proxy for 0.5 BMSY (red dotted line). 

 

 

However, it is important to note that outputs from the LBB model using longline length 

frequency data should be analysed with caution. Two characteristics of the longline fishery 

for toothfish may limit the applicability of the LBB model to these length frequency data. 

First, longline gear is very selective, with a narrow size range being targeted based on the size 

of the hook. It is therefore possible that the length frequency of caught toothfish is not 

representative of the length composition of the exploited stock. Since all of the underlying 

fisheries equations used by the LBB model assume a representative sampling of the length 

composition, a very size-selective gear like longlines would lead to poor model performance 

(Froese et al., 2018). Secondly, the LBB model uses length as a proxy for age of the exploited 
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fish in the exploited stock (Froese et al., 2018). But in the areas targeted by the longline 

fishery, the exploited population is primarily composed of mature adult fish that will continue 

to age without growing in length (B. Lee, FIFD, pers. comm.). Therefore, in this segment of 

the population, length is not a proxy for age, and no estimate of length-dependent mortality 

can be obtained by the model. The authors of the LBB model note that in this situation, the 

model would only be applicable to the shallow-water phases of the species, where length of 

the fish does reflect the age (Froese et al., 2018). 

As a consequence, LBB should be well suited for the young, shallow-water phase of the 

toothfish life cycle that is sampled by the finfish and Loligo trawl fisheries. In addition, these 

fisheries use much less size-selective gear, and therefore avoid the first pitfall mentioned 

above as well. The finfish trawl fishery captures toothfish of a fairly wide range, centred on 

an Lmean value of about 50 cm, which has decreased slowly between 1988 and 2018 (Figure 

7). As in the longline fishery, there is evidence of growth overfishing in the finfish trawl 

fishery where the optimum selectivity length is 80 cm. There’s also evidence of past and 

current overfishing, and that the stock is currently in an overfished state, although in certain 

years (2006, 2014) it seems like the stock was not being overfished (Figure 7). However, over 

the majority of the time series, the biomass was estimated to be well below the level of 

0.5BMSY, with occasionally also having very high fishing mortality (F/M) estimates (Figure 

7). 

 

 
Figure 7. LBB model outputs for the finfish trawl fishery (FIN). Plot description as in 

Figure 6. 
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Figure 8. LBB model outputs for the Loligo trawl fishery (LOL). Plot description as in 

Figure 6. 

 

Finally, the toothfish length frequency from the Loligo trawl fishery shows a similar 

pattern to the finfish trawl fishery. There is evidence that growth overfishing is taking place, 

with the mean length of the exploited population (40 – 50 cm) is well below the length of the 

unfished population (~70 cm), and the length at first capture (20 – 30 cm) below the optimum 

selectivity length (~65 cm). The capture length seems to be slowly decreasing in the Loligo 

trawl fishery (Figure 8). As in the finfish trawl fishery, the fishing mortality and biomass 

estimates are extremely variable over time, with some years showing high overfishing, and 

states of being overfished (2009 – 2011, 2014 – 2016).  

 

Discussion and Recommendation 

 

The alternative stock assessment approaches examined in this study provide some 

useful perspective to the assessment of the Falkland Islands toothfish stock. Interestingly, the 

two approaches, JABBA and LBB, seem to be appropriate for different segments of the 

toothfish stock. JABBA provides very comprehensive stock management outputs with less 

data than the CASAL model, but still requires estimates of catch and CPUE. Unfortunately, 

this information is only reliably available in the longline fishery at this time. Although 

bycatch is monitored to some degree in the trawl fisheries, there is still some doubt as to the 

accuracy of the toothfish catch data given the likelihood of missing small juvenile toothfish in 

trawls, and their similarity to juveniles of other species (rock cod Patagonotothen sp., and 

icefish Champsocephalus esox). Therefore, the JABBA outputs are likely to only mirror 

changes in the larger deep-water adult and sub-adult segment of the population, the one that 

is targeted by the longline fishery. 

On the other hand, the LBB model is mostly appropriate for the young shallow-water 

segment of the population. As mentioned in the results section above, this is primarily due to 
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the gear selectivity of the longline and the much slower rate of somatic growth at older ages 

in adult toothfish. But given the small amount of data available for toothfish in trawl fisheries 

(consisting primarily of length frequency data collected by observers) LBB is valuable as it 

provides some information on that segment of the toothfish population. Overall, the JABBA 

and LBB approaches are most appropriate for different portions of the Falkland Islands 

toothfish stock, and taken together they can provide insight into the entire toothfish stock 

around the Falkland Islands. 

The outputs of the age-structured production model run with CASAL on the toothfish 

stock of the Falkland Islands suggests that the toothfish fishery is currently sustainable (the 

stock is not overfished and not undergoing overfishing), with a MSY estimated at 1,932 t 

(Farrugia and Winter, 2018). The JABBA model produces slightly more conservative 

outputs, with an MSY of about 1,402 t. Additionally, the biomass time series produced by the 

JABBA and CASAL models are very similar. Based on the CASAL model, the total 

allowable catch of toothfish in the longline fishery was set at 1,040 t, which according to the 

JABBA model projections should lead to an increase in biomass. If toothfish catch in trawl 

fisheries is also considered, total catch of toothfish has ranged between 1,233 and 1,564 t in 

the last 10 years (average 1,395 t). Three of those years had total catch above 1,500 t, the 

level at which the JABBA model projects biomass will decrease.  

The outputs of the LBB model are not directly comparable to the CASAL model 

because they focus on different parts of the population, but also because the LBB model 

produces relative parameter estimates rather than absolute ones as CASAL does. But the LBB 

outputs do provide some insight into the data-poor segment of the toothfish stock, and as such 

are valuable to examine. However, the time series produced by the LBB model show very 

high variability (Figures 7 and 8). This is likely an artefact of the variability of the data in the 

trawl fisheries and it makes drawing firm conclusions about the current status of the stock 

difficult. In addition, it should be noted that the LBB method has been criticized for being 

sensitive to the assumption that the system is in equilibrium conditions, and to the assumption 

that the largest observed size can approximate the asymptotic length (Hordyk et al., 2019). It 

is therefore important that the outputs of the LBB be examined critically, and only used to 

provide insight and not as the sole information on which to base management 

recommendations. As more data on the trawl-caught toothfish are collected, it may be 

possible in the future to switch from LBB to other approaches to describe the small, young 

shallow-water segment of the toothfish population. 

 

Given the ease with which these models can be run, we recommend that an alternative 

toothfish stock assessment using JABBA and LBB be run every year in parallel with the 

primary CASAL stock assessment model. These alternative models can be used to 1) increase 

confidence in the overall results of the toothfish CASAL model (using the outputs from 

JABBA), and 2) complement the CASAL model by providing some insight into the juvenile 

segment of the population caught in trawl fisheries (using the outputs from LBB). 

Furthermore, we recommend that both of the JABBA and LBB approaches be tested on other 

commercial species in the Falkland Islands, especially ones for which other more data-

intensive techniques are not possible. 
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Appendix 

 

R Code – JABBA 
##><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><><>< 
## JABBA: Just Another Bayesian Biomass Assessment 
## Input File for JABBA 
## Developed by Henning Winker & Felipe Carvalho (Cape Town/Hawaii)   
##><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><> 
 
# required packages 
library(gplots) 
library(coda) 
library(rjags) 
library(R2jags) 
library("fitdistrplus") 
library(reshape) 
 
#---------------------------------------------------------------- 
# Setup working directories and output folder labels  
#----------------------------------------------------------------- 
# Set Working directory file, where assessments are stored  
File = "C:/Work/Stock Assessment/JABBA/Toothfish 2019" 
# Set working directory for JABBA R source code 
JABBA.file = "C:/Work/Stock Assessment/JABBA/Toothfish 2019" 
# JABBA version 
version = "v1.1" 
# Set Assessment file: assement folder within File that includes .csv input files 
assessment = "TOO"  
# add specifier for assessment (File names of outputs) 
 
#><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><> 
# Graphic, Output, Saving (.RData) settings  
#><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><> 
KOBE.plot = TRUE # Produces JABBA Kobe plot  
KOBE.type = c("ICCAT","IOTC")[2] # ICCAT uses 3 colors; IOTC 4 (incl. orange)  
Biplot= TRUE # Produces a "post-modern" biplot with buffer and target zones (Quinn & Collie 2005) 
SP.plot = c("standard","phase")[2] # Produces standard or 'Kobe phase' SP plot   
save.trajectories =TRUE # saves posteriors of P=B/K, B/Bmsy and H/Hmsy as .RData object  
harvest.label = c("Hmsy","Fmsy")[2] # choose label preference H/Hmsy versus Fmsy 
CPUE.plot= TRUE # Runs state-tool to produce "alligned" multi-CPUE plot   
meanCPUE = FALSE # Uses averaged CPUE from state-space tool instead of individual indices   
Projection = TRUE # Use Projections: requires to define TACs vectors  
save.projections = TRUE # saves projection posteriors as .RData object  
catch.metric = "(t)" # Define catch input metric e.g. (tons) "000 t" etc  
Reproduce.seed = TRUE # If FALSE a random seed assigned to each run, if TRUE set.seed(123) 
P_bound = c(0.02,1)  # Soft penalty bounds for P 
# Save entire posterior as .RData object 
save.all = FALSE # (if TRUE, a very large R object of entire posterior is saved)   
#><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><> 
 
#><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><> 
# Optional: Note Scenarios 
#><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><> 
# S1: Model including Brazil1  
# S2: Model excluding Brazil1 
# S3: Base-case Model with time blocks on ESP and JPN  
# S4: Added scenario to illustrate CPUE average option  
#><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><> 
# Specify Scenario name for output file names 
Scenarios = c(paste0("Scenario",1:3))  
 
# Execute multiple JABBA runs in loop  
for(s in 1:3){ 
  Scenario = Scenarios[s]  
   
  #><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><> 
  # Suplus Production model specifications 
  #><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><> 
   
  # Choose model type:  
  # 1: Schaefer 
  # 2: Fox   
  # 3: Pella-Tomlinsson   
   



Directorate of Natural Resources – Fisheries  Alternative Stock Assessments 
  Patagonian Toothfish 

16 

 

  #Model = c(3,3,3,3,3)[s] 
  Model = c(1,2,3)[s]  
  #Mod.names = c("Schaefer","Fox","Pella")[Model] 
  Mod.names=c("Schaefer", "Fox", "Pella")[Model] 
   
  # Depensation opiton: 
  # Set Plim = Blim/K where recruitment may become impaired (e.g. Plim = 0.25)  
  # Choose Plim = 0 to reduce to conventional Schaefer, Fox, Pella models  
  Plim = 0 
   
  # Required specification for Pella-Tomlinson (Model = 3) 
  BmsyK = 0.4 # Set Surplus Production curve inflection point 
  #><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>   
   
  #-------------------------------------------------- 
  # Read csv files 
  #-------------------------------------------------- 
   
  # Use SEs from csv file for abudance indices (TRUE/FALSE) 
  SE.I = TRUE 
   
  # Load assessment data 
  catch = read.csv(paste0(File,"/",assessment,"/Catch",assessment,".csv")) 
  cpue = read.csv(paste0(File,"/",assessment,"/cpue",assessment,".csv"))# 
   
  if(SE.I ==TRUE){ 
    se =  read.csv(paste0(File,"/",assessment,"/se",assessment,".csv")) 
  } 
   
  names(cpue) 
  names(catch) 
   
  #-------------------------------------------------- 
  # option to exclude CPUE time series or catch year 
  #-------------------------------------------------- 
   
  # Set up Base-Case for SWO 
   
   
  # if(s<3){ # Combine SPA and JAPAN 
  #   cpue[,4] = apply(cpue[,4:5],1,mean,na.rm=TRUE) 
  #   cpue[,6] = apply(cpue[,6:7],1,mean,na.rm=TRUE) 
  #    
  #   cpue = cpue[,-c(5,7)]  
  #   se[,4] = apply(se[,4:5],1,mean,na.rm=TRUE) 
  #   se[,6] = apply(se[,6:7],1,mean,na.rm=TRUE) 
  #    
  #   se = se[,-c(5,7)] 
  #   cpue[!is.finite(cpue[,4]),4]=NA 
  #   cpue[!is.finite(cpue[,5]),5]=NA 
  #   se[!is.finite(se[,4]),4]=NA 
  #   se[!is.finite(se[,5]),5]=NA 
  #    
  # } 
   
  # Remove BrazilI 
  # if(s>1){ 
  #   cpue = cpue[,-c(2)] 
  #   se = se[,-c(2)] 
  # } 
   
  names(cpue) 
  ncol(catch) 
  ncol(cpue) 
   
  #------------------------------------------------------ 
  # Option use mean CPUE from state-space cpue averaging 
  #----------------------------------------------------- 
  meanCPUE = FALSE 
  #if(s==4) meanCPUE = TRUE 
  #------------------------------------------------ 
  # Prior for unfished biomass K 
  #------------------------------------------------ 
  # The option are:  
  # a) Specify as a lognormal prior with mean and CV  
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  # b) Specify as range to be converted into lognormal prior 
   
  K.dist = c("lnorm","range")[1] 
   
  # if lnorm use mean and CV; if range use lower,upper bound 
  K.prior = c(60000,1)  
   
  #K.dist = c("lnorm","range")[2] # set K.dist at 2 to specify a range, or to specify the resilience descriptor from FishBase 
   
  # if lnorm use mean and CV; if range use lower,upper bound; or use FishBase resilience descriptor: 
  #K.prior = "Low" #From FishBase 
   
  #----------------------------------------------------------- 
  # mean and CV and sd for Initial depletion level P1= SB/SB0 
  #----------------------------------------------------------- 
  # Set the initial depletion prior B1/K  
  # To be converted into a lognormal prior (with upper bound at 1.1) 
   
  psi.dist= c("lnorm","beta")[1] 
  # specify as mean and CV  
  psi.prior = c(1,0.25)  
   
  #-------------------------------------------------------------- 
  # Determine estimation for catchability q and observation error  
  #-------------------------------------------------------------- 
  # Assign q to CPUE 
  sets.q = 1:(ncol(cpue)-1)  
   
   
  #---------------------------------------------------- 
  # Determine r prior 
  #---------------------------------------------------- 
  # The option are:  
  # a) Specifying a lognormal prior  
  # b) Specifying a resiliance category after Froese et al. (2017; CMSY) 
  # Resilience: "Very low", "Low", "Medium", High" (requires r.range = TRUE) 
   
  # use [1] lognormal(mean,stdev) or [2] range (min,max) or 
  r.dist = c("lnorm","range")[2]  
   
  r.prior = "Low"  
   
  #><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>> 
  # Observation Error 
  #><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>> 
   
  #To Estimate additional observation variance set sigma.add = TRUE 
  sigma.est = TRUE 
   
  # Series 
  sets.var = 1:(ncol(cpue)-1) # estimate individual additional variace 
   
  # As option for data-weighing 
  # minimum fixed observation error for each variance set (optional choose 1 value for both) 
  fixed.obsE = c(0.2) # Important if SE.I is not availble 
   
  # Total observation error: TOE = sqrt(SE^2+sigma.est^2+fixed.obsE^2) 
   
  #><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>> 
  # Process Error 
  #><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>> 
  #Estimate set sigma.proc == True 
  sigma.proc = TRUE 
  # Determines if process error deviation are estimated for all years (TRUE)   
  # or only from the point the first abundance index becomes available (FALSE) 
  proc.dev.all = FALSE  
  #------------------------------------------ 
  if(sigma.proc == TRUE){ 
    igamma = c(4,0.01) #specify inv-gamma parameters 
     
    # Process error check 
    gamma.check = 1/rgamma(1000,igamma[1],igamma[2]) 
    # check mean process error + CV 
    mu.proc = sqrt(mean(gamma.check)); CV.proc = sd(sqrt(gamma.check))/mean(sqrt(gamma.check)) 
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    # check CV 
    round(c(mu.proc,CV.proc),3) 
    quantile(sqrt(gamma.check),c(0.1,0.9)) 
  }else{ 
    sigma.proc = 0.07 #IF Fixed: typicallly 0.05-0.15 (see Ono et al. 2012) 
  } 
  #-------------------------------------------- 
  #><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>> 
  # Optional: Do TAC Projections 
  #><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>> 
  Projection = TRUE # Switch on by Projection = TRUE  
   
  # Check final year catch  
  catch[nrow(catch),] 
   
  # Set range for alternative TAC projections 
  TACs = seq(500,3000,250) #example 
   
  # Intermitted TAC to get to current year 
  TACint = mean(catch[nrow(catch)-3,2]:catch[nrow(catch),2]) # avg last 3 years 
  #TACint = 1500 # Catch for 2016 
  # Set year of first TAC implementation 
  imp.yr = 2019 
  # Set number of projections years 
  pyrs = 20 
   
   
  #><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><> 
  # Execute model and produce output 
  #><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><> 
   
  # MCMC settings 
  ni <- 30000 # Number of iterations 
  nt <- 5 # Steps saved 
  nb <- 5000 # Burn-in 
  nc <- 2 # number of chains 
  nsaved = (ni-nb)/nt*nc 
   
  # Run model (BSPSPexe file must be in the same working directory) 
  source(paste0(JABBA.file,"/JABBA",version,".R"))  
   
}# THE END 
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R code – LBB 
# Length-based Bayesian Biomass estimator (LBB) 
# Fits LBB model to length frequency data to estimate Linf, Lc, M/K, F/K  
# and derived reference points F/M, Z/K, Lopt, Lc_opt, B/B0, B/Bmsy, Y/R 
# Main code developed by Rainer Froese in May-June 2017, modified in April-May 2018 
# Gianpaolo Coro and Henning Winker did the JAGS coding 
 
rm(list=ls(all=TRUE)) # clear previous variables etc 
options(digits=3) # displays all numbers with three significant digits as default 
graphics.off() # close graphics windows from previous sessions 
library(R2jags) 
library(Hmisc) 
 
# Select stock to be analysed, TOO, TOO_LL, TOO_TR, TOO_LLU, TOO_FIN, TOO_LOL, TOO_OTH 
Stock       <- "TOO_LL" 
 
# Set working directory 
setwd("C:/Work/Stock Assessment/LBB/TOO 2019") 
 
# Select file with stock ID info 
ID.File   <- "Stock_ID.csv" 
 
# Initialize some variables 
n.sim         <- 10  #ifelse(Stock %in% c("CodRedFSim"),1,10) # number of years to be created in simulations 
 
############################################################## 
#  Functions 
############################################################## 
#-------------------------------------------------------- 
# Exploited B/B0 ratio from B&H equations, for variable F 
#-------------------------------------------------------- 
# assuming that observed lengths are the lower bounds of length classes 
# get lowest exploited (>= 0.01 F) length class and class width 
 
BH <- function(AllLength,Linf,MK,FK,GausSel,selpar1,selpar2) { 
 if(GausSel==F) { 
     r.Lc     <- selpar1 
     r.alpha  <- selpar2  
     Lx       <- AllLength[AllLength >= Linf*(r.Lc-4.59/r.alpha)][1] 
 } else if(GausSel==T) { 
     r.GLmean <- selpar1 
     r.SD     <- selpar2 
     Lx       <- AllLength[AllLength >= Linf*(r.GLmean-3*r.SD)][1] 
 } 
 class.width  <- median(diff(sort(unique(AllLength)))) 
 FM <- FK/MK 
  
 # Linf=120;Lx=22.5;r.Lc=0.2917;r.alpha=60;MK=1.5385;FK=0.7692;FM=0.5;ZK=2.3077  
 # uncomment above row for comparison of Y'R= 0.0332, B/B0=0.467 with CodLightSim 
 r            <- vector() # auxilliary reduction factor 
 G            <- vector() # product of reduction factors 
 SL.bh        <- vector() # selection at length 
 YR1.2        <- vector() # relative yield per recruit per length class 
 CPUER1.2     <- vector() # relative CPUE per recruit per length class 
 B1.2         <- vector() # relative unexploited biomass per recruit by length class 
 L.bh         <- seq(from=Lx, to=Linf, by=class.width) # lengths to be considered 
 r.L.bh       <-  L.bh / Linf # standardized lengths 
  
 # calculate selection, Y'/R and CPUE'/R for every length class 
 for(o in 1 : length(r.L.bh)) {  
   if(GausSel==F) { 
     if(o<length(r.L.bh)) { SL.bh[o] <- mean(c(1/(1+exp(-r.alpha*(r.L.bh[o]-r.Lc))), # mean selection in length class 
                                               1/(1+exp(-r.alpha*(r.L.bh[o+1]-r.Lc))))) 
     } else SL.bh[o] <- 1/(1+exp(-r.alpha*(r.L.bh[o]-r.Lc))) 
   } else if(GausSel==T) { # gill net selection  
     if(o<length(r.L.bh)) { SL.bh[o] <- mean(c(exp(-((r.L.bh[o]-r.GLmean)^2/(2*r.SD^2))), # mean selection in length class 
                                               exp(-((r.L.bh[o+1]-r.GLmean)^2/(2*r.SD^2))))) 
     } else SL.bh[o] <- exp(-((r.L.bh[o]-r.GLmean)^2/(2*r.SD^2))) 
 } # end of calculation of selectivity loop 
   
   if(o<length(r.L.bh)) { 
     r[o]       <- (1-r.L.bh[o+1])^(FK*SL.bh[o])/(1-r.L.bh[o])^(FK*SL.bh[o])  
     G[o]       <- prod(r[1:o]) } 
   if(o==1) { 
     YR1.2[o] <-(FM*SL.bh[o]/(1+FM*SL.bh[o])*(1-r.L.bh[o])^MK*(1-3*(1-r.L.bh[o])/(1+1/ 
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                 (MK+FK*SL.bh[o]))+3*(1-r.L.bh[o])^2/(1+2/(MK+FK*SL.bh[o]))- 
                  (1-r.L.bh[o])^3/(1+3/(MK+FK*SL.bh[o])))) - 
                   (FM*SL.bh[o]/(1+FM*SL.bh[o])*(1-r.L.bh[o+1])^MK*(1-3*(1-r.L.bh[o+1])/(1+1/ 
                    (MK+FK*SL.bh[o]))+3*(1-r.L.bh[o+1])^2/(1+2/(MK+FK*SL.bh[o]))- 
                     (1-r.L.bh[o+1])^3/(1+3/(MK+FK*SL.bh[o]))))*G[o]  
   } else if(o==length(r.L.bh)) { 
     YR1.2[o] <- (FM*SL.bh[o]/(1+FM*SL.bh[o])*(1-r.L.bh[o])^MK*(1-3*(1-r.L.bh[o])/(1+1/ 
                  (MK+FK*SL.bh[o]))+3*(1-r.L.bh[o])^2/(1+2/(MK+FK*SL.bh[o]))- 
                   (1-r.L.bh[o])^3/(1+3/(MK+FK*SL.bh[o])))) * G[o-1]  
   } else { 
     YR1.2[o] <- (FM*SL.bh[o]/(1+FM*SL.bh[o])*(1-r.L.bh[o])^MK*(1-3*(1-r.L.bh[o])/(1+1/ 
                  (MK+FK*SL.bh[o]))+3*(1-r.L.bh[o])^2/(1+2/(MK+FK*SL.bh[o]))- 
                   (1-r.L.bh[o])^3/(1+3/(MK+FK*SL.bh[o])))) * G[o-1] - 
                    (FM*SL.bh[o]/(1+FM*SL.bh[o])*(1-r.L.bh[o+1])^MK*(1-3*(1-r.L.bh[o+1])/(1+1/ 
                     (MK+FK*SL.bh[o]))+3*(1-r.L.bh[o+1])^2/(1+2/(MK+FK*SL.bh[o]))- 
                      (1-r.L.bh[o+1])^3/(1+3/(MK+FK*SL.bh[o]))))*G[o]               
   } # end of loop to calculate yield per length class 
  
   CPUER1.2[o] <- YR1.2[o] / FM # CPUE/R = Y/R divided by F/M 
    
   if(o<length(r.L.bh)) { 
     B1.2[o] <- ((1-r.L.bh[o])^MK*(1-3*(1-r.L.bh[o])/(1+1/MK)+3*(1-r.L.bh[o])^2/ 
                                            (1+2/MK)-(1-r.L.bh[o])^3/(1+3/MK)) - 
       (1-r.L.bh[o+1])^MK*(1-3*(1-r.L.bh[o+1])/(1+1/MK)+3*(1-r.L.bh[o+1])^2/ 
                                     (1+2/MK)-(1-r.L.bh[o+1])^3/(1+3/MK)))*SL.bh[o] 
   } else { 
     B1.2[o] <- ((1-r.L.bh[o])^MK*(1-3*(1-r.L.bh[o])/(1+1/MK)+3*(1-r.L.bh[o])^2/ 
                                            (1+2/MK)-(1-r.L.bh[o])^3/(1+3/MK)))*SL.bh[o] 
   } 
 } # end of B&H loop through length classes 
 BB0   <- sum(CPUER1.2)/sum(B1.2) 
 YR    <- sum(YR1.2) 
 if(BB0 < 0.25) YR <- YR * BB0 / 0.25 # reduce YR if recruitment and thus productivity is reduced 
 return(list(BB0,YR)) 
 
} # end of BH function 
 
#------------------------------------------------------------ 
# Function to aggregate data by year 
#------------------------------------------------------------ 
AG  <- function(dat) { # where dat contains dat$Year, dat$Length in cm, dat$CatchNo 
 
# aggregate normalized annual LFs by weighing with square root of sample size 
# get sum of frequencies per year 
sum.Ny  <- aggregate(Freq~Year,dat,sum)$Freq   
# get the sqrt of the sum of frequencies for every year 
sqrt.Ny <- sqrt(sum.Ny)  
# get highest frequency in each year 
max.Ny <- aggregate(Freq~Year,dat,max)$Freq 
# get Number of Length bins in each year 
binsN <- aggregate(Freq~Year,dat,length)$Freq     
# create vectors for sqrt.Ni and sum.Ni to weigh LF data 
sqrt.Ni = rep(sqrt.Ny,binsN) 
sum.Ni = rep(sum.Ny,binsN) 
#Do weighing 
# Divide all years by sum.Ni and multiply by sqrt.Ni 
LF.w = dat$Freq/sum.Ni*sqrt.Ni   
# Aggregate 
LF = aggregate(LF.w, by=list(dat$Length),FUN=sum) 
# Add correct column names 
colnames(LF) <- c("Length","Freq")          
return(LF) 
} #end of aggregate function 
 
#----------------------------------------------------------- 
# Function to plot LBB-fit for a single year 
#----------------------------------------------------------- 
# expects lengths relative to Linf (L/Linf) 
plot.year <- function(r.L.y,r.Freq.y,r.Lopt, SL1, SL2, MK, FK, Linf) { 
 SL       <- vector(); SL[1]  <- 0 
 xN       <- vector(); xN[1]  <- 1   
 for(p in 2:length(r.L.y)) { 
   if(dat.ID$GausSel==T) { 
     SL[p]  <- exp(-((r.L.y[p]-SL1/Linf)^2/(2*(SL2/Linf)^2))) # selection at length r.L[i] 
   } else {SL[p]  <- 1/(1+exp(-SL2*(r.L.y[p]-SL1/Linf)))} 
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   xN[p]  <- xN[p-1]*exp((MK+FK*SL[p])*(log(1-r.L.y[p])-log(1-r.L.y[p-1]))) 
 } # end of loop for length classes 
 # determine sum of squared residuals, store parameters if less then min of previous 
 Freq.pred      <- xN*SL 
 sum.Freq.pred  <- sum(Freq.pred) 
 r.Freq.pred    <- Freq.pred / sum.Freq.pred           
 plot(x=r.L.y, y= r.Freq.pred, 
      xlab="Length / Linf",ylab="relative Frequency", 
      xlim=c(0,1),ylim = c(0,1.2*max(r.Freq.y)), 
      col="red", type="l", bty="l",main=Year,las=1) 
 points(x=r.L.y,y=r.Freq.y, cex=0.5) 
 lines(x=c(1,1), y=c(0,1.07*max(r.Freq.y,na.rm=T)),col="darkgreen") 
 text(x=1,y=1.15*max(r.Freq.y,na.rm=T),"Linf",col="darkgreen")  
 lines(x=c(r.Lopt,r.Lopt), y=c(0,1.07*max(r.Freq.y,na.rm=T)),col="darkgreen") 
 text(x=r.Lopt,y=1.15*max(r.Freq.y,na.rm=T),"Lopt",col="darkgreen")  
 text(x=0.15,y=0.8*max(r.Freq.y,na.rm=T),paste("Linf=",format(Linf,digits=3),sep="")) 
 text(x=0.15,y=0.6*max(r.Freq.y,na.rm=T),paste("Z/K=",format(MK+FK,digits=3),sep="")) 
}  
  
############################################################# 
# read files with ID and with LF data to be analyzed 
############################################################# 
# read ID data 
dat.ID         <- read.csv(ID.File, header=T, stringsAsFactors=F)  
 
# restrict ID data to selected Stock 
dat.ID         <- dat.ID[dat.ID$Stock==Stock,] 
 
# read LF data 
dat.raw        <- read.csv(dat.ID$File, header=T, stringsAsFactors=F)  
 
# restrict LF data to selected stock 
dat.raw        <- dat.raw[dat.raw$Stock == Stock,]  
 
# restrict analysis to one or more gears 
if(is.na(dat.ID$Gears.user[1])==FALSE) dat.raw <- dat.raw[dat.raw$Gear %in% dat.ID$Gears.user,] 
 
# make sure data are numeric 
dat.raw$Length  <- as.numeric(dat.raw$Length) 
dat.raw$CatchNo <- as.numeric(dat.raw$CatchNo) 
dat.raw$Year    <- as.integer(dat.raw$Year) 
 
# if StartYear is given, restrict data to >= StartYear 
if(is.na(dat.ID$StartYear)==F) dat.raw <- dat.raw[dat.raw$Year>=dat.ID$StartYear,] 
 
# if EndYear is given, restrict data to <= EndYear 
if(is.na(dat.ID$EndYear)==F) dat.raw <- dat.raw[dat.raw$Year<=dat.ID$EndYear,] 
 
# if Years.user are given, restrict data to these years 
#modification by Gianpaolo 09 07 17 
if(is.na(dat.ID$Years.user[[1]])==F) dat.raw <- dat.raw[dat.raw$Year %in% (strsplit(dat.ID$Years.user, ","))[[1]],]  
 
# if Linf.user is given, restict data to < Linf.user 
if(is.na(dat.ID$Linf.user)==F) dat.raw <- dat.raw[dat.raw$Length<(dat.ID$Linf.user*ifelse(dat.ID$mm.user==TRUE,1,10)),]  
 
# if Lcut.user is given, restrict data to >= Lcut.user 
if(is.na(dat.ID$Lcut.user)==F) dat.raw <- dat.raw[dat.raw$Length>=(dat.ID$Lcut.user*ifelse(dat.ID$mm.user==TRUE,1,10)),] 
 
# remove NA records 
 dat.raw    <- dat.raw[which(is.na(dat.raw$CatchNo)==F),] 
 
# sort data by year and length 
 dat.raw    <- dat.raw[order(dat.raw$Year,dat.raw$Length),] 
 
# Put data into vectors 
StartYear  <- min(dat.raw$Year) 
EndYear    <- max(dat.raw$Year) 
AllYear    <- dat.raw$Year 
AllLength  <- dat.raw$Length 
if(dat.ID$mm.user==FALSE) AllLength <- AllLength/10  
AllFreq    <- dat.raw$CatchNo  
Years      <- sort(unique(AllYear)) 
nYears     <- length(Years) 
 
# if data are simulated, add noise and n.sim more years 
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if(substr(Stock,start=nchar(Stock)-2,stop=nchar(Stock))=="Sim") {   
  n.L.sim      <- length(AllLength) 
  AllYearSim   <- AllYear 
  AllLengthSim <- AllLength 
  AllFreqSim   <- rlnorm(n=n.L.sim,mean=log(AllFreq),sd=0.1) 
  if(!(Stock %in% c("CodfFSim","CodRecSim"))) {  # CodfFSim and CodRecSim are simulations that should run for only one 
year 
  for(i in 1 : (n.sim-1)) { 
    AllYearSim   <- append(AllYearSim,AllYear+i) 
    AllLengthSim <- append(AllLengthSim,AllLength) 
    AllFreqSim   <- append(AllFreqSim,rlnorm(n=n.L.sim,mean=log(AllFreq),sd=0.1)) 
  } 
  AllYear    <- AllYearSim 
  AllLength  <- AllLengthSim 
  AllFreq    <- AllFreqSim 
  Years      <- sort(unique(AllYear)) 
  nYears     <- length(Years) 
  EndYear    <- Years[nYears] } 
} # end of simulation loop 
 
#----------------------------------------------------- 
# plot LF for all years to detect potential problems 
#----------------------------------------------------- 
for(z in 1:ceiling(nYears/6)) { 
  #modification by Gianpaolo 09 07 17   
  if(grepl("win",tolower(Sys.info()['sysname']))) {windows(12,8) 
  } else if(grepl("linux",tolower(Sys.info()['sysname']))) {X11(12,8) 
  } else {quartz(12,8)} 
    par(mfrow=c(2,3)) 
 for(v in 1 : 6) { 
   w <- v+(z-1)*6 
   if(w > nYears) break() 
   df.p        <- 
data.frame(AllYear[AllYear==Years[w]&AllFreq>0],AllLength[AllYear==Years[w]&AllFreq>0],AllFreq[AllYear==Years[w]&AllFreq
>0]) 
   names(df.p) <- c("Year","Length","Freq") 
   LF.p        <- AG(dat=df.p) # function to aggregate data in case bins are not unique 
   plot(x=LF.p$Length,y=LF.p$Freq,xlab="",ylab="Freq",bty="l",main=Years[w],cex=0.5) 
 } 
} 
 
#---------------------------------------------------- 
# Create matrix to store annual estimates 
#---------------------------------------------------- 
Ldat      <- data.frame(Stock=rep(Stock,nYears),Year=rep(NA,nYears), 
                        Linf=rep(NA,nYears), 
                        Linf.lcl=rep(NA,nYears), 
                        Linf.ucl=rep(NA,nYears), 
                        Lc=rep(NA,nYears), # for trawl selection 
                        Lc.lcl=rep(NA,nYears), 
                        Lc.ucl=rep(NA,nYears), 
                        Lmean=rep(NA,nYears), 
                        r.alpha=rep(NA,nYears), 
                        r.alpha.lcl=rep(NA,nYears), 
                        r.alpha.ucl=rep(NA,nYears), 
                        r.GLmean=rep(NA,nYears),r.SD=rep(NA,nYears), # for gill net selection 
                        MK=rep(NA,nYears), 
                        MK.lcl=rep(NA,nYears), 
                        MK.ucl=rep(NA,nYears), 
                        FK=rep(NA,nYears), 
                        FK.lcl=rep(NA,nYears), 
                        FK.ucl=rep(NA,nYears), 
                        ZK=rep(NA,nYears), 
                        ZK.lcl=rep(NA,nYears), 
                        ZK.ucl=rep(NA,nYears), 
                        FM=rep(NA,nYears), 
                        FM.lcl=rep(NA,nYears), 
                        FM.ucl=rep(NA,nYears), 
                        r.Lopt=rep(NA,nYears), 
                        BB0=rep(NA,nYears), 
                        BB0.lcl=rep(NA,nYears), 
                        BB0.ucl=rep(NA,nYears), 
                        YR=rep(NA,nYears), 
                        YR.lcl=rep(NA,nYears), 
                        YR.ucl=rep(NA,nYears), 
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                        perc.mat=rep(NA,nYears), 
                        L95=rep(NA,nYears)) 
 
 
#-------------------------------------------------------------------------------------- 
# Use aggregated LF data for estimation of Linf (and overall Z/K) 
#-------------------------------------------------------------------------------------- 
df        <- data.frame(AllYear,AllLength,AllFreq) 
names(df) <- c("Year","Length","Freq") 
 
LF.all    <- AG(dat=df) # function to aggregate data by year and across years 
 
# standardize to max Freq 
LF.all$Freq = LF.all$Freq/max(LF.all$Freq)  
# remove leading empty records 
LF.all     <- LF.all[which(LF.all$Freq>0)[1] : length(LF.all$Length),] 
# remove trailing empty records 
LF.all     <- LF.all[1 : which(LF.all$Length==max(LF.all$Length[LF.all$Freq>0])),] 
 
# get number of records in LF.all 
n.LF.all   <- length(LF.all$Length)  
# use largest fish as Lmax 
Lmax       <- LF.all$Length[n.LF.all] 
# use median of largest fish per year as Lmax.med 
Lmax.med   <- median(as.numeric(by(dat.raw$Length[dat.raw$CatchNo>0],dat.raw$Year[dat.raw$CatchNo>0],max)))/10 
 
# If no Linf is provided by the user (preferred), determine Linf from fully selected LF: 
# Freq=Nstart*exp(ZK*(log(1-L/Linf)-log(1-Lstart/Linf))) 
# Nstart is canceled out when dividing both sides by their sums 
# --------------------------------------------------------- 
# determine start values of selection ogive to find first fully selected length class Lstart 
 L10         <- LF.all$Length[which(LF.all$Freq>0.1)[1]] # use length at 10% of peak frequency as proxy for L10 
 L90         <- LF.all$Length[which(LF.all$Freq>0.9)[1]] # use length at 90% of peak frequency as proxy for L90 
 Lc.st       <- ifelse(is.na(dat.ID$Lc.user)==TRUE,(L10 + L90)/2,dat.ID$Lc.user)  # use mean of L10 and L90 as proxy for Lc, 
else user input 
 alpha.st    <- -log(1/LF.all$Freq[which(LF.all$Freq>0.1)[1]])/(L10-Lc.st) # use rearranged logistic curve to estimate slope alpha 
 
 # determine start values for Linf and Z/K  
 Linf.st     <- max(LF.all$Length) # use Lmax as proxy for Linf 
 Lmean.st    <- sum(LF.all$Length[LF.all$Length>=Lc.st]*LF.all$Freq[LF.all$Length>=Lc.st])/ 
                      sum(LF.all$Freq[LF.all$Length>=Lc.st]) 
 MK.st       <- ifelse(is.na(dat.ID$MK.user)==TRUE, 1.5,dat.ID$MK.user) # default 1.5 
 ZK.st       <- (Linf.st-Lmean.st)/(Lmean.st-Lc.st)       # the Holt equation 
 FK.st       <- ifelse((ZK.st-MK.st)>0,ZK.st-MK.st,0.3)   # prevent M/K being larger than Z/K 
 
 # get vectors with fully selected length classes for Linf estimation 
 if(is.na(dat.ID$Lstart.user)==FALSE) {Lstart <- dat.ID$Lstart.user} else { 
   Lstart     <- (alpha.st*Lc.st-log(1/0.95-1))/alpha.st   # Length where selection probability is 0.95   
   # test if there are enough (>=4) length classes for estimation of aggregated Linf and ZK  
   Lstart.i   <- which(LF.all>=Lstart)[1] 
   Lmax.i     <- length(LF.all$Length) 
   peak.i     <- which.max(LF.all$Freq) 
   if(Lstart.i<(peak.i+1)) Lstart <- LF.all$Length[peak.i+1] # make sure fully selected length starts after peak  
   if((Lmax.i-Lstart.i)<4) Lstart <- LF.all$Length[Lstart.i-1] # make sure enough length classes are available 
 } 
 # do not include Lmax to allow Linf < Lmax and to avoid error in nls when Linf-L becomes negative 
 L.L         <- LF.all$Length[LF.all$Length >= Lstart  & LF.all$Length < Linf.st] 
 L.Freq      <- LF.all$Freq[LF.all$Length>=L.L[1]& LF.all$Length < Linf.st] 
  
 if(length(L.L)<4) { 
   #modification by Gianpaolo 09 07 17  
   if(grepl("win",tolower(Sys.info()['sysname']))) {windows(6,4) 
   } else if(grepl("linux",tolower(Sys.info()['sysname']))) {X11(6,4) 
   } else {quartz(6,4)} 
    
  plot(x=LF.all$Length,y=LF.all$Freq, bty="l",main=Stock) 
  lines(x=c(Lstart,Lstart),y=c(0,0.9*max(LF.all$Freq)),lty="dashed") 
  text(x=Lstart,y=max(LF.all$Freq),"Lstart") 
  lines(x=c(Linf.st,Linf.st),y=c(0,0.9*max(LF.all$Freq)),lty="dashed") 
  text(x=Linf.st,y=max(LF.all$Freq),"Lmax") 
  stop("Too few fully selected data points: set Lstart.user\n")} 
 
 # standardize frequencies by dividing by sum of observed frequencies, needed to drop NLstart from equation 
 sum.L.Freq  <- sum(L.Freq) 
 L.Freq      <- L.Freq/sum.L.Freq 
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 # use nls() to find Linf-ZK combination with least residuals 
 if(is.na(dat.ID$Linf.user)==TRUE) { 
   Linf.mod    <- nls(L.Freq ~ ((Linf-L.L)/(Linf-Lstart))^ZK / 
                     sum(((Linf-L.L)/(Linf-Lstart))^ZK), 
                   start=list(ZK=ZK.st,Linf=Linf.st), 
                   lower=c(0.5*ZK.st,0.999*Linf.st),  
                   upper=c(1.5*ZK.st,1.2*Linf.st),  
                   algorithm = "port") 
 
   ZK.nls       <- as.numeric(coef(Linf.mod)[1]) 
   ZK.nls.sd    <- as.numeric(coef(summary(Linf.mod))[,2][1]) 
   ZK.nls.lcl   <- ZK.nls-1.96*ZK.nls.sd 
   ZK.nls.ucl   <- ZK.nls+1.96*ZK.nls.sd 
   Linf.nls     <- as.numeric(coef(Linf.mod)[2]) 
   Linf.nls.sd  <- as.numeric(coef(summary(Linf.mod))[,2][2]) 
   Linf.lcl     <- Linf.nls-1.96*Linf.nls.sd 
   Linf.ucl     <- Linf.nls+1.96*Linf.nls.sd 
 } else {  # end of loop to determine Linf and ZK.L 
           # use given Linf and determine ZK.L 
   # use Linf provided by user if given 
    Linf.nls    <- dat.ID$Linf.user  
    Linf.nls.sd <- 0.01*dat.ID$Linf.user 
    ZK.mod      <- nls(L.Freq ~ exp(ZK*(log(1-L.L/Linf.nls)-log(1-L.L[1]/Linf.nls)))/ 
                        sum(exp(ZK*(log(1-L.L/Linf.nls)-log(1-L.L[1]/Linf.nls)))), 
                      start=list(ZK=ZK.st), 
                      lower=c(0.7*ZK.st), 
                      upper=c(1.3*ZK.st),  
                      algorithm = "port") 
    ZK.nls       <- as.numeric(coef(ZK.mod)[1]) 
    ZK.nls.sd    <- as.numeric(coef(summary(ZK.mod))[,2][1]) 
    ZK.nls.lcl   <- ZK.nls-1.96*ZK.nls.sd 
    ZK.nls.ucl   <- ZK.nls+1.96*ZK.nls.sd 
     
} # end of loop if Linf is given by user 
 
#------------------------------------------------- 
# Plot aggregated results 
#------------------------------------------------- 
# plot aggregated histogram with fit to fully selected part 
 #modification by Gianpaolo 09 07 17  
 if(grepl("win",tolower(Sys.info()['sysname']))) {windows(12,8) 
 } else if(grepl("linux",tolower(Sys.info()['sysname']))) {X11(12,8) 
 } else {quartz(12,8)} 
  
par(mfrow=c(2,3),las=1) 
plot(x=LF.all$Length,y=LF.all$Freq, bty="l",xlim=c(0,max(max(LF.all$Length),Linf.nls)), 
     ylim=c(0,1.1*max(LF.all$Freq)), 
     main=paste(Stock,", aggregated LF"),xlab=ifelse(dat.ID$mm.user==F,"Length (cm)","Length (mm)"),ylab="Frequency") 
 
Lstart.i    <- which(LF.all$Length>=Lstart)[1] 
Lstart.Freq <- mean(c(LF.all$Freq[(Lstart.i-1):(Lstart.i+1)])) 
if(dat.ID$GausSel==F) { 
  lines(x=L.L,y=Lstart.Freq*exp(ZK.nls*(log(1-L.L/Linf.nls)-log(1-L.L[1]/Linf.nls))), col="blue", lwd=3) 
  lines(x=c(Lc.st,Lc.st), y=c(0,1), col="darkgreen") 
  text(x=Lc.st,y=1, "Lc", col="darkgreen", adj=c(0.5,-0.5))  
  }   
lines(x=c(Linf.nls,Linf.nls), y=c(0,1), col="darkgreen") 
text(x=Linf.nls,y=1, "Linf", col="darkgreen", adj=c(0.5,-0.5)) 
text(x=0.1*Linf.nls,y=1,"Priors:") 
text(x=0.15*Linf.nls,y=0.8,paste("Linf=",format(Linf.nls,digits=3),sep="")) 
if(dat.ID$GausSel==F) text(x=0.15*Linf.nls,y=0.6,paste("Z/K=",format(ZK.nls,digits=2),sep="")) 
text(x=0.1*Linf.nls,y=0.4,paste("Lc=",format(Lc.st,digits=3),sep="")) 
 
# get vector of all lengths <= prior Linf to avoid error in equation 
AllFreq       <- AllFreq[AllLength <= Linf.nls] 
AllYear       <- AllYear[AllLength <= Linf.nls] 
AllLength     <- AllLength[AllLength <= Linf.nls] 
 
#----------------------------------------- 
# Start LF analysis by year 
#----------------------------------------- 
cat("Running Jags model to fit SL and N distributions for",dat.ID$Species,"in", Years,"....\n") 
i = 0 # start counter 
for(Year in Years) { 
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  i = i+1 
  # if MergeLF==TRUE and if this is the second or heigher year and no simulation, aggregate LF with previous year LF 
  if(i>1 & dat.ID$MergeLF==TRUE & substr(Stock,start=nchar(Stock)-2,stop=nchar(Stock))!="Sim") { 
    AG.yr <- c(Years[i-1],Year) } else AG.yr <- Year 
   
  # aggregate data within the year (sometimes there are more than one sample per year) 
  df        <- data.frame(AllYear[AllYear%in%AG.yr],AllLength[AllYear%in%AG.yr],AllFreq[AllYear%in%AG.yr]) 
  names(df) <- c("Year","Length","Freq") 
  LF.y      <- AG(dat=df) # function to aggregate data by year and across years 
  LF.y$Freq <- LF.y$Freq/sum(LF.y$Freq) # standardize frequencies 
 
  # remove empty leading and trailing records 
  LF.y        <- LF.y[which(LF.y$Freq>0)[1] : length(LF.y$Length),] 
  LF.y        <- LF.y[1 : which.max(LF.y$Length[LF.y$Freq>0]),] 
  # get vectors 
  L.y         <- LF.y$Length 
  r.Freq.y    <- LF.y$Freq 
   
  # fill remaining zero frequencies with very small number, to avoid error 
  r.Freq.y[r.Freq.y==0] <- min(r.Freq.y[r.Freq.y>0],na.rm=T)/100 
  # enter data for this year into data frame 
  Ldat$Year[i]     <- Year 
 
#------------------------------------------------------------------------- 
# Estimate annual parameters Lc, alpha, M/K, F/K from LF curve with trawl-type selection 
#------------------------------------------------------------------------- 
  # determine priors  
  n.L         <- length(L.y) 
  Linf.pr     <- Linf.nls 
  Linf.sd.pr  <- ifelse(Linf.nls.sd/Linf.nls<0.01,Linf.nls.sd,0.01*Linf.nls) # restict prior CV of Linf to < 0.01 
  MK.pr       <- MK.st 
  MK.sd.pr    <- ifelse(is.na(dat.ID$MK.user)==TRUE,0.15,0.075) 
 
if(dat.ID$GausSel==FALSE){ # apply trawl-like selection  
 Lc.pr        <- ifelse(is.na(dat.ID$Lc.user)==TRUE,1.02*Lc.st,dat.ID$Lc.user) # with 1.02 multiplier to account for systematic 
small underestimation 
 Lc.sd.pr     <- ifelse(is.na(dat.ID$Lc.user)==TRUE,0.1*Lc.pr,0.05*Lc.pr) # assume narrower SD if Lc is given by user 
 r.max.Freq   <- max(r.Freq.y,na.rm=T)  
 r.alpha.pr   <- -log(r.max.Freq/r.Freq.y[which(r.Freq.y>(0.1*r.max.Freq))[1]])/(L10/Linf.nls-Lc.st/Linf.nls) # relative alpha for 
standardized data 
 r.alpha.sd.pr<- 0.025*r.alpha.pr  
 FK.pr        <- ifelse((ZK.nls-MK.st) > 0,ZK.nls-MK.st,0.3) # if Z/K <= M/K assume low F/K = 0.3  
  
 # list of data to pass to JAGS plus list of parameters to estimate    
 jags.data <- list 
("r.Freq.y","L.y","n.L","Linf.pr","Linf.sd.pr","Lc.pr","Lc.sd.pr","r.alpha.pr","r.alpha.sd.pr","MK.pr","MK.sd.pr","FK.pr") 
 jags.params <- c("r.alpha.d","Lc.d","SL","xN","FK.d","MK.d","Linf.d") 
 
 #--------------------------------- 
 # LBB JAGS model 
 #--------------------------------- 
 sink("SLNMod.jags") 
cat(" 
  model { 
  r.alpha.d_tau  <- pow(r.alpha.sd.pr, -2)  
  r.alpha.d      ~ dnorm(r.alpha.pr,r.alpha.d_tau)  
 
   Lc.d_tau  <- pow(Lc.sd.pr,-2) 
   Lc.d      ~ dnorm(Lc.pr,Lc.d_tau) #        
 
   MK.d_tau  <-pow(MK.sd.pr, -2) # strong prior on M/K 
   MK.d      ~ dnorm(MK.pr, MK.d_tau) 
 
   Linf.tau  <- pow(Linf.sd.pr,-2)  
   Linf.d    ~ dnorm(Linf.pr,Linf.tau) 
     
   FK.d       ~ dlnorm(log(FK.pr),4) # wide prior range for F/K 
 
   SL[1]       ~ dlogis(0,1000) 
   Freq.pred[1]<-0 
   xN[1]       <-1 
 
   for(j in 2:n.L) { 
    SL[j]<- 1/(1+exp(-r.alpha.d*(L.y[j]/Linf.d-Lc.d/Linf.d))) # selection at length L[j] 
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    xN[j] <- xN[j-1]*((Linf.d-L.y[j])/(Linf.d-L.y[j-1]))^(MK.d+FK.d*SL[j]) 
 
  Freq.pred[j]<-xN[j]*SL[j] 
   
    # normalize frequencies by dividing by sum of frequencies; multiply with 10 to avoid small numbers and with 1000 for 
effective sample size 
    r.Freq.pred[j]<- Freq.pred[j]/sum(Freq.pred)*10*1000 
  }  
   
  #><> LIKELIHOOD FUNCTION 
  #><> Fit observed to predicted LF data using a Dirichlet distribution (more robust in JAGS) 
  r.Freq.y[2:n.L] ~ ddirch(r.Freq.pred[2:n.L])   
  
  } # END OF MODEL 
    ",fill = TRUE) 
sink() 
 
MODEL = "SLNMod.jags" 
jagsfitSLN <- jags.parallel(data=jags.data, working.directory=NULL, inits=NULL,  
                            parameters.to.save=jags.params,  
                            model.file=paste(MODEL),  
                            n.burnin=300, n.thin=10, n.iter=600, n.chains=3) 
 
# use median and percentiles 
Ldat$Lc[i]      <- median(jagsfitSLN$BUGSoutput$sims.list$Lc.d) 
Ldat$Lc.lcl[i]  <- quantile(jagsfitSLN$BUGSoutput$sims.list$Lc.d,0.025) 
Ldat$Lc.ucl[i]  <- quantile(jagsfitSLN$BUGSoutput$sims.list$Lc.d,0.975) 
Ldat$Lmean[i]   <- sum(L.y[L.y>=Ldat$Lc[i]]*r.Freq.y[L.y>=Ldat$Lc[i]])/sum(r.Freq.y[L.y>=Ldat$Lc[i]]) 
Ldat$r.alpha[i] <- median(jagsfitSLN$BUGSoutput$sims.list$r.alpha.d) 
Ldat$r.alpha.lcl[i]<- quantile(jagsfitSLN$BUGSoutput$sims.list$r.alpha.d,0.025) 
Ldat$r.alpha.ucl[i]<- quantile(jagsfitSLN$BUGSoutput$sims.list$r.alpha.d,0.975) 
Ldat$MK[i]      <- median(jagsfitSLN$BUGSoutput$sims.list$MK.d) 
Ldat$MK.lcl[i]  <- quantile(jagsfitSLN$BUGSoutput$sims.list$MK.d,0.025) 
Ldat$MK.ucl[i]  <- quantile(jagsfitSLN$BUGSoutput$sims.list$MK.d,0.975) 
Ldat$FK[i]      <- median(jagsfitSLN$BUGSoutput$sims.list$FK.d) 
Ldat$FK.lcl[i]  <- quantile(jagsfitSLN$BUGSoutput$sims.list$FK.d,0.025) 
Ldat$FK.ucl[i]  <- quantile(jagsfitSLN$BUGSoutput$sims.list$FK.d,0.975) 
FMi             <- jagsfitSLN$BUGSoutput$sims.list$FK.d/jagsfitSLN$BUGSoutput$sims.list$MK.d 
Ldat$FM[i]      <- median(FMi) 
Ldat$FM.lcl[i]  <- quantile(FMi,0.025) 
Ldat$FM.ucl[i]  <- quantile(FMi,0.975) 
ZKi             <- jagsfitSLN$BUGSoutput$sims.list$MK.d + jagsfitSLN$BUGSoutput$sims.list$FK.d 
Ldat$ZK[i]      <- median(ZKi) 
Ldat$ZK.lcl[i]  <- quantile(ZKi,0.025) 
Ldat$ZK.ucl[i]  <- quantile(ZKi,0.975) 
Ldat$r.Lopt[i]  <- 3/(3+Ldat$MK[i]) 
Ldat$Linf[i]    <- median((jagsfitSLN$BUGSoutput$sims.list$Linf.d)) 
Ldat$Linf.lcl[i]  <- quantile(jagsfitSLN$BUGSoutput$sims.list$Linf.d,0.025) 
Ldat$Linf.ucl[i]  <- quantile(jagsfitSLN$BUGSoutput$sims.list$Linf.d,0.975) 
 
} # end of trawl-like selection  
 
#---------------------------------------------------------------------- 
# Estimate parameters GLmean, SD, F/K, M/K if selection is gillnet-like 
#----------------------------------------------------------------------  
if(dat.ID$GausSel==TRUE) { 
  # determine priors 
  # assume length at peak Freq as mean and distance to length at 80% of peak as SD of mean 
  GLmean.st <- L.y[which.max(r.Freq.y)] 
  # assume SD of Gaussian selection as distance between length at peak and length at 50% of peak 
  Lc.pr     <- L.y[which(r.Freq.y >= (0.5*max(r.Freq.y)))][1] 
  SD.st      <- max(GLmean.st-Lc.pr,0.25*GLmean.st) 
                     
  cat("Running Jags model to fit SL and N distributions\n") 
   
  n.L <- length(L.y) 
   
  jags.data <- list ("n.L","GLmean.st","L.y","SD.st","ZK.nls","r.Freq.y","Linf.pr","Linf.sd.pr","MK.pr") 
  jags.params <- c("GLmean.d","SD.d","SL","xN","FK.d","MK.d","Linf.d") 
   
  #--------------------------- 
  # JAGS model L-based with integral 
  #--------------------------- 
  sink("SLNMod.jags") 
  cat(" 
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      model { 
      GLmean.tau <- pow(0.1*GLmean.st,-2)  
      GLmean.d   ~ dnorm(GLmean.st,GLmean.tau) 
       
      SD.tau    <- pow(0.2*SD.st,-2) 
      SD.d      ~ dnorm(SD.st,SD.tau) 
       
      MK.d_tau  <-pow(0.15,-2) 
      MK.d      ~ dnorm(MK.pr,MK.d_tau) 
 
      Linf.tau  <- pow(Linf.sd.pr,-2) 
      Linf.d    ~ dnorm(Linf.pr,Linf.tau) 
       
      FK        <- (ZK.nls-1.5) # ZK overestimated in gillnet selection, used as upper range 
      FK.d      ~ dunif(0,FK)   
 
      SL[1]~ dlogis(0,1000) 
      Freq.pred[1]<-0 
      xN[1]<-1 
       
      for(j in 2:n.L) { 
        SL[j]<- exp(-((L.y[j]-GLmean.d)^2/(2*SD.d^2))) 
 
        xN[j]<-xN[j-1]*exp((MK.d+FK.d*SL[j])*(log(1-L.y[j]/Linf.d)-log(1-L.y[j-1]/Linf.d))) 
       
        Freq.pred[j]<-xN[j]*SL[j] 
       
        #><> add effective sample size (try 100 typical for LF data) 
        r.Freq.pred[j]<- Freq.pred[j]/sum(Freq.pred)*10000 
      }  
       
      #><> LIKELIHOOD FUNCTION 
      #><> Fit observed to predicted LF data using a Dirichlet distribution (more robust in JAGS) 
      r.Freq.y[2:n.L]~ddirch(r.Freq.pred[2:n.L])   
 
   } # END OF MODEL 
      ",fill = TRUE) 
  sink() 
  
  MODEL = "SLNMod.jags" 
  #jagsfitSLN <- jags(jags.data, inits=NULL, jags.params, paste(MODEL), n.chains = Nchains , n.thin =Nthin , n.iter =Niter , 
n.burnin = Nburnin) 
 
  jagsfitSLN <- jags.parallel(data=jags.data, working.directory=NULL, inits=NULL,  
                              parameters.to.save=jags.params,  
                              model.file=paste(MODEL),  
                              n.burnin=300, n.thin=10, n.iter=1000, n.chains=3) 
 
  # use median and percentiles 
  Ldat$GLmean[i]    <- median(jagsfitSLN$BUGSoutput$sims.list$GLmean.d) 
  Ldat$GLmean.lcl[i]<- quantile(jagsfitSLN$BUGSoutput$sims.list$GLmean.d,0.025) 
  Ldat$GLmean.ucl[i]<- quantile(jagsfitSLN$BUGSoutput$sims.list$GLmean.d,0.975) 
  Ldat$SD[i]        <- median(jagsfitSLN$BUGSoutput$sims.list$SD.d) 
  Ldat$SD.lcl[i]    <- quantile(jagsfitSLN$BUGSoutput$sims.list$SD.d,0.025) 
  Ldat$SD.ucl[i]    <- quantile(jagsfitSLN$BUGSoutput$sims.list$SD.d,0.975) 
  Ldat$MK[i]        <- median(jagsfitSLN$BUGSoutput$sims.list$MK.d) 
  Ldat$MK.lcl[i]    <- quantile(jagsfitSLN$BUGSoutput$sims.list$MK.d,0.025) 
  Ldat$MK.ucl[i]    <- quantile(jagsfitSLN$BUGSoutput$sims.list$MK.d,0.975) 
  Ldat$FK[i]        <- median(jagsfitSLN$BUGSoutput$sims.list$FK.d) 
  Ldat$FK.lcl[i]    <- quantile(jagsfitSLN$BUGSoutput$sims.list$FK.d,0.025) 
  Ldat$FK.ucl[i]    <- quantile(jagsfitSLN$BUGSoutput$sims.list$FK.d,0.975) 
  FMi               <- jagsfitSLN$BUGSoutput$sims.list$FK.d/jagsfitSLN$BUGSoutput$sims.list$MK.d 
  Ldat$FM[i]        <- median(FMi) 
  Ldat$FM.lcl[i]    <- quantile(FMi,0.025) 
  Ldat$FM.ucl[i]    <- quantile(FMi,0.975) 
  ZKi               <- jagsfitSLN$BUGSoutput$sims.list$MK.d + jagsfitSLN$BUGSoutput$sims.list$FK.d 
  Ldat$ZK[i]        <- median(ZKi) 
  Ldat$ZK.lcl[i]    <- quantile(ZKi,0.025) 
  Ldat$ZK.ucl[i]    <- quantile(ZKi,0.975) 
  Ldat$r.Lopt[i]    <- 3/(3+Ldat$MK[i]) 
  Ldat$Linf[i]      <- median((jagsfitSLN$BUGSoutput$sims.list$Linf.d)) 
  Ldat$Linf.lcl[i]  <- quantile(jagsfitSLN$BUGSoutput$sims.list$Linf.d,0.025) 
  Ldat$Linf.ucl[i]  <- quantile(jagsfitSLN$BUGSoutput$sims.list$Linf.d,0.975) 
 
} # end of gillnet loop 
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# call BH function to estimate B/B0 and YR for the given year [i]  
  BH.list  <- 
BH(AllLength=unique(AllLength[AllYear==Year]),Linf=Ldat$Linf[i],MK=Ldat$MK[i],FK=Ldat$FK[i],GausSel=dat.ID$GausSel, 
                   selpar1=ifelse(dat.ID$GausSel==T,Ldat$GLmean[i]/Ldat$Linf[i],Ldat$Lc[i]/Ldat$Linf[i]), 
                   selpar2=ifelse(dat.ID$GausSel==T,Ldat$SD[i]/Ldat$Linf[i],Ldat$r.alpha[i])) 
  Ldat$BB0[i]  <- as.numeric(BH.list[1]) 
  Ldat$YR[i]   <- as.numeric(BH.list[2]) 
 
  # Error propagation, assuming that fractional uncertainties add in quadrature   
  rel.lcl <- sqrt(((Ldat$FM[i]-Ldat$FM.lcl[i])/Ldat$FM[i])^2+((Ldat$MK[i]-Ldat$MK.lcl[i])/Ldat$MK[i])^2+((Ldat$FK[i]-
Ldat$FK.lcl[i])/Ldat$FK[i])^2+((Ldat$Linf[i]-Ldat$Linf.lcl[i])/Ldat$Linf[i])^2) 
  rel.ucl <- sqrt(((Ldat$FM.ucl[i]-Ldat$FM[i])/Ldat$FM[i])^2+((Ldat$MK.ucl[i]-Ldat$MK[i])/Ldat$MK[i])^2+((Ldat$FK.ucl[i]-
Ldat$FK[i])/Ldat$FK[i])^2+((Ldat$Linf.ucl[i]-Ldat$Linf[i])/Ldat$Linf[i])^2)    
  Ldat$BB0.lcl[i] <- Ldat$BB0[i]-Ldat$BB0[i]*rel.lcl 
  Ldat$BB0.ucl[i] <- Ldat$BB0[i]+Ldat$BB0[i]*rel.ucl 
  Ldat$YR.lcl[i] <- Ldat$YR[i]-Ldat$YR[i]*rel.lcl 
  Ldat$YR.ucl[i] <- Ldat$YR[i]+Ldat$YR[i]*rel.ucl 
 
  # get MSFD D3.3 indicators 
  Ldat$L95[i]      <- wtd.quantile(x=L.y,weights=r.Freq.y,probs=c(0.95)) 
  Ldat$perc.mat[i] <- ifelse(is.na(dat.ID$Lm50)==F,sum(r.Freq.y[L.y>dat.ID$Lm50])/sum(r.Freq.y),NA) 
   
 # plot first and last year 
  if(which(Years==Year)==1 | which(Years==Year)==length(Years)) { 
    r.L.y    <- L.y[L.y < Ldat$Linf[i]] / Ldat$Linf[i]  
    r.Freq.y <- r.Freq.y[L.y < Ldat$Linf[i]] 
    plot.year(r.L.y=r.L.y, r.Freq.y=r.Freq.y,r.Lopt=Ldat$r.Lopt[i], 
              SL1=ifelse(dat.ID$GausSel==T,Ldat$GLmean[i],Ldat$Lc[i]), 
              SL2=ifelse(dat.ID$GausSel==T,Ldat$SD[i],Ldat$r.alpha[i]), 
              MK=Ldat$MK[i],FK=Ldat$FK[i],Linf=Ldat$Linf[i]) 
  } 
 
} # end of annual loop  
 
# get some reference points as median of time series 
Linf.med     <- median(Ldat$Linf) 
Linf.lcl     <- median(Ldat$Linf.lcl) 
Linf.ucl     <- median(Ldat$Linf.ucl) 
if(dat.ID$GausSel==F) { 
  Lc.med       <- median(Ldat$Lc) 
  r.alpha.med  <- median(Ldat$r.alpha) } else { 
  GLmean.med   <- median(Ldat$GLmean) 
  SD.med       <- median(Ldat$SD) } 
MK.med       <- median(Ldat$MK) 
MK.lcl       <- median(Ldat$MK.lcl) 
MK.ucl       <- median(Ldat$MK.ucl) 
FK.med       <- median(Ldat$FK) 
FK.lcl       <- median(Ldat$FK.lcl) 
FK.ucl       <- median(Ldat$FK.ucl) 
FM.med       <- median(Ldat$FM) 
FM.lcl       <- median(Ldat$FM.lcl) 
FM.ucl       <- median(Ldat$FM.ucl) 
ZK.med       <- median(Ldat$ZK) 
ZK.lcl       <- median(Ldat$ZK.lcl) 
ZK.ucl       <- median(Ldat$ZK.ucl) 
r.Lopt.med   <- median(Ldat$r.Lopt) 
Lopt.med     <- r.Lopt.med*Linf.med 
Lc_opt.med   <- Linf.med*(2+3*FM.med)/((1+FM.med)*(3+MK.med))  
BB0.med      <- median(Ldat$BB0) 
BB0.lcl      <- median(Ldat$BB0.lcl) 
BB0.ucl      <- median(Ldat$BB0.ucl) 
YR.med       <- median(Ldat$YR) 
YR.lcl       <- median(Ldat$YR.lcl) 
YR.ucl       <- median(Ldat$YR.ucl) 
 
BFM1B0.list  <- BH(AllLength=unique(AllLength),Linf=Linf.med,MK=MK.med,FK=MK.med,GausSel=dat.ID$GausSel, 
                     selpar1=ifelse(dat.ID$GausSel==T,r.Lopt.med,5/(2*(3+MK.med))), 
                     selpar2=ifelse(dat.ID$GausSel==T,SD.med/Linf.med,r.alpha.med)) 
 
BFM1B0       <- as.numeric(BFM1B0.list[1]) 
YRFM1        <- as.numeric(BFM1B0.list[2]) 
 
cat("\n----------------------------------------------------------------------\n") 
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cat("Results for",dat.ID$Species,", stock",Stock,",",StartYear,"-",EndYear,ifelse(dat.ID$GausSel==T,", Gaussian selection",""), 
"\n") 
cat("(95% confidence limits in parentheses) File:",dat.ID$File,"\n") 
cat("-----------------------------------------------------------------------\n") 
cat("Linf prior =",Linf.pr,", SD =",Linf.sd.pr,"(cm)",ifelse(is.na(dat.ID$Linf.user)==TRUE,"","(user-defined)"),"\n") 
cat("Z/K prior  =",ZK.nls,", SD =", ZK.nls.sd,", M/K prior  =", MK.pr, ", SD 
=",MK.sd.pr,ifelse(is.na(dat.ID$MK.user)==TRUE,"","(user-defined)"),"\n")  
if(dat.ID$GausSel==F) {  
  cat("F/K prior  =", FK.pr, "(wide range with tau=4 in log-normal distribution)\n") 
  cat("Lc prior   =",Lc.pr,", SD =",Lc.sd.pr,"(cm)",ifelse(is.na(dat.ID$Lc.user)==TRUE,"","(user-defined)"), 
  ", alpha prior=",r.alpha.pr,", SD =",0.1*r.alpha.pr,"\n\n") 
} 
 
cat("General reference points [median across years]: \n") 
cat("Linf               =",Linf.med,paste("(",format(Linf.lcl,digits=3),"-",format(Linf.ucl,digits=3), 
                        ifelse(dat.ID$mm.user==F,") cm",") mm"), sep=""), "\n")   
cat("Lopt               =",format(Lopt.med,digits=2),paste(ifelse(dat.ID$mm.user==F,"cm,","mm,"),"Lopt/Linf 
="),format(r.Lopt.med,digits=2),"\n") 
cat("Lc_opt             =",format(Lc_opt.med,digits=2),paste(ifelse(dat.ID$mm.user==F,"cm,","mm,"),"Lc_opt/Linf 
="),format(Lc_opt.med/Linf.med,digits=2),"\n") 
cat("M/K                =",MK.med,paste("(",format(MK.lcl,digits=3),"-",format(MK.ucl,digits=3), 
                        ")",sep=""),"\n") 
cat("F/K                =",FK.med,paste("(",format(FK.lcl,digits=3),"-",format(FK.ucl,digits=3), 
                                     ")",sep=""),"\n") 
cat("Z/K                =",ZK.med,paste("(",format(ZK.lcl,digits=3),"-",format(ZK.ucl,digits=3), 
                                     ")",sep=""),"\n") 
cat("F/M                =",FM.med,paste("(",format(FM.lcl,digits=3),"-",format(FM.ucl,digits=3), 
                                     ")",sep=""),"\n") 
cat(ifelse(dat.ID$GausSel==F,"B/B0 F=M Lc=Lc_opt =","B/B0 F=M Lmean=Lopt="),BFM1B0,"\n") 
cat("B/B0               =",BB0.med,paste("(",format(BB0.lcl,digits=3),"-",format(BB0.ucl,digits=3), 
                                     ")",sep=""),"\n") 
cat(ifelse(dat.ID$GausSel==F,"Y/R' F=M Lc=Lc_opt =","Y/R' F=M Lmean=Lopt="),YRFM1,"\n") 
cat("Y/R'               =",YR.med,paste("(",format(YR.lcl,digits=3),"-",format(YR.ucl,digits=3), 
                                      ")",sep=""),"(linearly reduced if B/B0 < 0.25)\n\n") 
cat("Estimates for last year",EndYear,":\n") 
last            <- which(Ldat$Year==EndYear) 
if(dat.ID$GausSel==F){ 
 cat("Lc         =",Ldat$Lc[last],paste("(",format(Ldat$Lc.lcl[last],digits=3), 
                    "-",format(Ldat$Lc.ucl[last],digits=3),ifelse(dat.ID$mm.user==F,") cm, Lc/Linf = ",") mm, Lc/Linf = "), 
                    format(Ldat$Lc[last]/Ldat$Linf[last],digits=2)," (",format(Ldat$Lc.lcl[last]/Ldat$Linf[last],digits=3),"-", 
                    format(Ldat$Lc.ucl[last]/Ldat$Linf[last],digits=3),")",sep=""),"\n") 
 cat("alpha      =",Ldat$r.alpha[last],"(",Ldat$r.alpha.lcl[last],"-",Ldat$r.alpha.ucl[last],") \n") 
 cat("Lmean/Lopt =",format(Ldat$Lmean[last]/(Ldat$r.Lopt[last]*Ldat$Linf[last]),digits=2), 
     ", Lc/Lc_opt =",format(Ldat$Lc[last]/Lc_opt.med,digits=2), 
     ", L95th =", Ldat$L95[last],ifelse(dat.ID$mm.user==F,"cm","mm"), 
     ", L95th/Linf =",format(Ldat$L95[last]/Ldat$Linf[last],digits=2), 
     ", Lm50 =", dat.ID$Lm50,ifelse(dat.ID$mm.user==F,"cm","mm"), 
     ", Mature =",format(Ldat$perc.mat[last]*100,digits=2),"%\n") 
 } else if(dat.ID$GausSel==T){ 
     cat("GLmean/Linf=",format(Ldat$GLmean[last]/Ldat$Linf[last],digits=2),",SD/Linf =",Ldat$SD[last]/Ldat$Linf[last],"\n") 
     cat("GLmean     =",Ldat$GLmean[last],",SD =",Ldat$SD[last],"\n") 
   } 
cat("F/K        =",format(Ldat$FK[last],digits=2),"(",Ldat$FK.lcl[last],"-",Ldat$FK.ucl[last],")\n") 
cat("F/M        =",format(Ldat$FK[last]/Ldat$MK[last],digits=2),"(",Ldat$FM.lcl[last],"-",Ldat$FM.ucl[last],")\n") 
cat("Z/K        =",Ldat$ZK[last],"(",Ldat$ZK.lcl[last],"-",Ldat$ZK.ucl[last],")\n") 
cat("Y/R'       =",format(Ldat$YR[last],digits=2),"(",Ldat$YR.lcl[last],"-",Ldat$YR.ucl[last],") (linearly reduced if B/B0 < 0.25)\n") 
cat("B/B0       =",format(Ldat$BB0[last],digits=2),"(",Ldat$BB0.lcl[last],"-",Ldat$BB0.ucl[last],")\n") 
cat("B/Bmsy     =",format(Ldat$BB0[last]/BFM1B0,digits=2),"(",Ldat$BB0.lcl[last]/BFM1B0,"-",Ldat$BB0.ucl[last]/BFM1B0,")\n") 
if(dat.ID$Comment != "") cat("Comment:",dat.ID$Comment,"\n") 
 
# point out questionable or impossible results 
# negative rates 
if(Ldat$MK[last] < 0 | Ldat$FK[i] < 0) cat("Data unsuitable for LF analysis, negative mortality rates are impossible\n") 
# Biomass larger than unexploited 
if(Ldat$BB0[last] >1.1) cat("Data unsuitable for LF analysis, biomass exceeds carrying capacity\n") 
 
 
#---------------------------------------------- 
#  Plot time series of Lc and Lmean 
#---------------------------------------------- 
if(nYears > 1) { 
 
if(dat.ID$GausSel==F){ 
plot(x=Ldat$Year,y=Ldat$Lmean, bty="l",type="l",  
     xlim=c(Ldat$Year[1],Ldat$Year[nYears]), 
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     xaxt="n", 
     ylim=c(0,max(c(1.1*Lopt.med,max(Ldat$Lmean,na.rm=T),max(Ldat$Lc.ucl),na.rm=T))),lwd=2, 
     xlab="Year",ylab = paste("Length",ifelse(dat.ID$mm.user==F,"(cm)","(mm)")),main="Lmean vs Lopt & Lc vs Lc_opt") 
axis(1,at=Ldat$Year) 
lines(x=Ldat$Year,y=Ldat$Lc,lwd=1,lty="dashed") 
#lines(x=Ldat$Year,y=Ldat$Lc.lcl,lty="dotted") 
#lines(x=Ldat$Year,y=Ldat$Lc.ucl,lty="dotted") 
lines(x=Ldat$Year,y=rep(Lc_opt.med,nYears),col="darkgreen", lty="dashed") # line for Lc_opt 
text(x=Ldat$Year[nYears],y=Lc_opt.med,"Lc_opt", adj=c(1,-0.5), col="darkgreen") 
lines(x=Ldat$Year,y=rep(Lopt.med,nYears),col="darkgreen") # line for Lopt 
text(x=Ldat$Year[nYears],y=Lopt.med,"Lopt", adj=c(1,-0.5), col="darkgreen") 
} 
 
#---------------------------------------------- 
#  Plot time series of GLmean relative to Lopt  
#---------------------------------------------- 
  if(dat.ID$GausSel==T){ 
    plot(x=Ldat$Year,y=Ldat$GLmean, bty="l",type="l",  
         xlim=c(Ldat$Year[1],Ldat$Year[nYears]), 
         xaxt="n", 
         ylim=c(0,max(1.1*median(Ldat$r.Lopt)*Linf.med,max(Ldat$GLmean),na.rm=T)),lwd=2, 
         xlab="Year",ylab = "Lenght (cm)",main="Lmean vs Lopt") 
    axis(1,at=Ldat$Year) 
    lines(x=Ldat$Year,y=(Ldat$GLmean.lcl),lty="dotted") 
    lines(x=Ldat$Year,y=(Ldat$GLmean.ucl),lty="dotted") 
    lines(x=Ldat$Year,y=rep(Lopt.med,nYears),col="darkgreen") # line for Lopt 
    text(x=Ldat$Year[nYears],y=Lopt.med,"Lopt", adj=c(1,-0.5), col="darkgreen") 
}     
#--------------------------------------------- 
# Plot time series of F/M  
#--------------------------------------------- 
plot(x=Ldat$Year,y=Ldat$FM, 
       ylim=c(0,max(max(Ldat$FM.ucl),1.05)),  
       bty="l",type = "l", lwd=1.5, xaxt="n", 
       main="previous F/M",xlab="Year",ylab="F/M") 
axis(1,at=Ldat$Year) 
lines(x=Ldat$Year,y=Ldat$FM.lcl,lty="dotted") 
lines(x=Ldat$Year,y=Ldat$FM.ucl,lty="dotted") 
abline(h=1.0,col="darkgreen")  
text(x=Ldat$Year[nYears],y=1,"F=M", adj=c(0.8,-0.5), col="darkgreen") 
     
#--------------------------------------------- 
# Plot time series of B/B0  
#--------------------------------------------- 
plot(x=Ldat$Year,y=Ldat$BB0,ylim=c(0,min(c(1.1,max(c(0.6,Ldat$BB0.ucl,1.1*BFM1B0))))),  
     bty="l",type = "l", lwd=1.5, xaxt="n", 
     main="exploited B / B0",xlab="Year",ylab="B / B0") 
axis(1,at=Ldat$Year) 
lines(x=Ldat$Year,y=Ldat$BB0.lcl,lty="dotted") 
lines(x=Ldat$Year,y=Ldat$BB0.ucl,lty="dotted") 
abline(h=1.0,col="darkgreen") # B0 
text(x=Ldat$Year[nYears],y=1,"B0", adj=c(0.8,-0.5), col="darkgreen") 
lines(x=Ldat$Year,y=rep(BFM1B0,nYears),lty="dashed", col="darkgreen") 
text(x=Ldat$Year[nYears-1],y=BFM1B0,"B F=M, Lc=opt", adj=c(0.8,-0.5),col="darkgreen") 
lines(x=Ldat$Year,y=rep(BFM1B0/2,nYears),lty="dotted", col="red") 
text(x=Ldat$Year[nYears-1],y=BFM1B0/2,"proxy 0.5 Bmsy", adj=c(0.8,-0.5),col="red") 
 
} # end of loop for plotting time series 


