

Falkland Islands Fisheries Department

Loligo Stock Assessment, First Season 2013

Andreas Winter

May 2013

Index

Summary 3
Introduction 3
Methods 5
Stock assessment 6
Data 6
Group arrivals / depletion criteria 8
Depletion models 12
Escapement biomass 14
Immigration 14
References 15
Appendix 1 17
Appendix 2 22
Appendix 3 23

Summary

1) The first season Loligo fishery of 2013 was open for the scheduled 50 days from February $24^{\text {th }}$ to April $14^{\text {th }}$, plus an extension of 3 days until April $17^{\text {th }}$ for vessels that had optionally started up to 3 days later. 19,908 tonnes of Doryteuthis gahi catch were reported; an intermediate amount compared to previous first seasons. 34.9% of D. gahi catch and 31.7% of effort were taken south of $52.5^{\circ} \mathrm{S}, 64.8 \%$ of D. gahi catch and 67.5% of effort were taken north of $51.5^{\circ} \mathrm{S}$, and less than 1% in the central region of the Loligo Box.
2) Sub-areas north and south of $52^{\circ} \mathrm{S}$ were depletion-modelled separately. In the north sub-area, 3 in-season depletion periods were inferred to have started on March $3^{\text {rd }}$, March $15^{\text {th }}$, and April $1^{\text {st }}$. In the south sub-area, 3 in-season depletion periods were inferred to have started on March $17^{\text {th }}$, March $27^{\text {th }}$, and April $7^{\text {th }}$.
3) Approximately 28,500 tonnes of D. gahi (95% confidence interval: [19,868 to 69,845] tonnes) were estimated to have immigrated into the Loligo Box during first season 2013, representing 85% of the D. gahi biomass in the fishing zone.
4) The final total estimate for D. gahi remaining in the Loligo Box at the end of first season 2013 was:
Maximum likelihood of 13,500 tonnes, with a 95% confidence interval of [5341 to 55,116] tonnes.
The risk of D. gahi escapement biomass at the end of the season being less than 10,000 tonnes was estimated at 10.15%.

Introduction

The first season of the 2013 Loligo fishery (Doryteuthis gahi - Patagonian squid) started on February $24^{\text {th }}$ with 11 vessels participating. Five vessels took the option of starting (and ending) the season later under the new flex rule: two vessels started on February $25^{\text {th }}$, one on February $26^{\text {th }}$, and two on February $27^{\text {th }}$. The vessel conducting the pre-season survey was still surveying on February $24^{\text {th }}$ (Winter et al., 2013). However, that vessel on that day was surveying outside the Loligo Box and therefore its catch for the $24^{\text {th }}$ was not included in the season depletion model. The season was ended by directed closure on April $14^{\text {th }}$, and 1,2 , or 3 days later for those vessels that had started later. Total reported catch by C-licensed vessels was 19,908 tonnes D. gahi, an intermediate amount compared to previous first seasons (Table 1).

As in previous seasons, the D. gahi stock assessment was conducted with depletion time-series models (Agnew et al., 1998; Roa-Ureta and Arkhipkin, 2007; Arkhipkin et al., 2008). Because D. gahi has an annual life cycle (Patterson, 1988), stock cannot be derived from a standing biomass carried over from prior years (Rosenberg et al., 1990). The depletion model instead back-calculates an estimate of initial abundance from data on catch, effort, and natural mortality (Roa-Ureta and Arkhipkin, 2007). In its basic form (DeLury, 1947) the depletion model assumes a closed population in a fixed area for the duration of the assessment. This assumption is imperfectly met in the Falkland Islands fishery, where stock analyses have often shown that D. gahi groups arrive in successive waves after the start of the season (Roa-Ureta, 2012). Arrivals of successive groups are inferred from discontinuities in the catch data. Fishing on a single, closed cohort would be expected to yield gradually decreasing CPUE, but gradually increasing average individual sizes, as the squid grow. When instead these data change suddenly, or in contrast to expectation, the immigration of a new group to the population is indicated.

Table 1. Loligo season catch comparisons since 2004. Days: total number of calendar days open to licensed Loligo fishing including (since $1^{\text {st }}$ season 2013) extension days; V-Days: aggregate number of licensed Loligo fishing days reported by all vessels for the season.

	Season 1			Season 2		
	Catch (t)	Days	V-Days	Catch (t)	Days	V-Days
2004				17,559	78	1271
2005	24,605	45	576	29,659	78	1210
2006	19,056	50	704	23,238	53	883
2007	17,229	50	680	24,171	63	1063
2008	24,752	51	780	26,996	78	1189
2009	12,764	50	773	17,836	59	923
2010	28,754	50	765	36,993	78	1169
2011	15,271	50	771	18,725	70	1099
2012	34,767	51	770	35,026	78	1095
2013	19,908	53	782			

In the event of a new group arrival, the depletion calculation is modified to account for this influx. This can be done two ways: (1) by a sequential algorithm that re-starts the depletion time-series on the date of a new group arrival (Roa-Ureta and Arkhipkin, 2007), allowing for different catchability coefficients in the different periods of the depletion time-series, or (2) by a simultaneous algorithm (Roa-Ureta, 2012) that adds new arrivals on top of the stock previously present, and assumes a common catchability coefficient for the entire depletion time-series. The main purpose of D. gahi assessment is to estimate the season-end biomass, in relation to the escapement threshold of 10,000 tonnes (Agnew et al., 2002; Barton, 2002). Therefore in practice only the most recent sequence of the depletion time-series is of concern when using modelling approach (1) (sequential algorithm). The basic form of the DeLury depletion model corresponding to this approach can be written as:
$\mathrm{C}_{\text {day }}$

$$
\begin{equation*}
=\mathrm{q} \times \mathrm{E}_{\mathrm{day}} \times \mathrm{N}_{\mathrm{day}} \times \mathrm{e}^{-\mathrm{M} / 2} \tag{1}
\end{equation*}
$$

where q is the catchability coefficient, M is natural mortality, considered constant at 0.0133 day $^{-1}$ (Roa-Ureta and Arkhipkin, 2007), and $\mathrm{C}_{\text {day }}, \mathrm{E}_{\text {day }}, \mathrm{N}_{\text {day }}$ are catch (numbers of D. gahi), fishing effort, and abundance (numbers of D. gahi) per day. The sequence 'per day' starts with the day that depletion is considered to have started, or that the most recent D. gahi group arrived. If two depletions are included in the same model, corresponding to approach (2) (simultaneous algorithm), then:
$\mathrm{C}_{\text {day }}$

$$
\begin{equation*}
=\mathrm{q} \times \mathrm{E}_{\text {day }} \times\left(\mathrm{N} 1_{\text {day }}+\left(\mathrm{N} 2_{\text {day }} \times\left.\mathrm{i} 2\right|_{0} ^{1}\right)\right) \times \mathrm{e}^{-\mathrm{M} / 2} \tag{2}
\end{equation*}
$$

where $i 2$ is a dummy variable taking the values 0 or 1 if 'day' is before or after the start day of the second depletion. For more than two depletions, $\mathrm{N} 3_{\text {day }}, \mathrm{i} 3, \mathrm{~N} 4_{\text {day }}, \mathrm{i} 4$, etc., would be included following the same pattern.

The original form of the DeLury depletion model proposed a linear relationship of catch vs. fishing effort and abundance, which means that if effort or abundance is doubled then - all else being equal - catch will double. But in reality, the relationships may depart from linearity. Increases in effort can elicit diminishing
returns. Increases and decreases in abundance can increase or decrease relative catchability, depending on habitat conditions or the behaviour of the squid. To relate this nonlinearity in the model, the catch equation can be expanded (taking equation (2) for example) as:
$\mathrm{C}_{\text {day }} \quad=\mathrm{q} \times \mathrm{E}_{\text {day }}{ }^{\alpha} \times\left(\mathrm{N} 1_{\text {day }}{ }^{\beta}+\left(\mathrm{N} 2_{\text {day }}{ }^{\beta} \times\left.\mathrm{i} 2\right|_{0} ^{1}\right)\right) \times \mathrm{e}^{-\mathrm{M} / 2}$
where α and β are respectively the effort and abundance hyper-parameters: $\alpha<1$ reflects effort saturability in the fishery, $\alpha>1$ effort synergy, $\beta<1$ reflects hyperstability of the target stock and $\beta>1$ hyperdepletion (Roa-Ureta, 2012). All approaches to the model (simultaneous or sequential; with or without hyperparameters) have advantages and disadvantages. The simultaneous algorithm uses more of the available data (Roa-Ureta, 2012), but if depletion does not develop until the later part of the season then the model will be poorly specified by fitting early data that contribute little information to the final outcome. Hyper-parameters relax the assumption of linearity, but increase the required degrees of freedom and may distort the effects of the primary parameters. All approaches were tested and the most suitable ones selected for the Loligo stock assessment.

Methods

Previous Loligo stock assessments (e.g., Winter, 2012a, b) were calculated in a Bayesian framework whereby results of the depletion model are conditioned by prior information on the stock from the pre-season survey. In the current season, the survey ending February $24^{\text {th }}$ estimated a low biomass of only 5333 tonnes D. gahi (Winter et al., 2013) which is unrepresentative for what turned out to be an average commercial season (Table 1). For the second season in a row (cf. Winter, 2012c), survey biomass was therefore not used as a Bayesian prior, and likelihood of the depletion models was instead calculated directly by optimizing the log difference between actual catch numbers and predicted catch numbers per day, in \log scale. Because of the added variability in fishing effort resulting from the flexibility in season start and end days implemented for the first time this season - differences per day were weighted by the number of vessels fishing, and the output likelihood profile was statistically corrected by a factor relating to the number of days of the depletion period (Roa-Ureta, 2011):

$$
\begin{equation*}
((n \text { Days }-2) / 2) \times \log \left(\sum_{\text {days }}\left(\log \left(\text { predicted } \mathrm{C}_{\text {day }}\right)-\log \left(\text { actual } \mathrm{C}_{\text {day }}\right)\right)^{2} \times n \mathrm{~V}_{\text {day }}\right) \tag{4}
\end{equation*}
$$

The optimization gives values for the parameters q, N start day (of however many depletions in the model) and if used α and β.

Distributions of the likelihood estimates of these parameters (i.e., measures of their statistical uncertainty) were computed using Markov Chain Monte Carlo (MCMC) (Gamerman and Lopes, 2006), a recommended method for fisheries assessments (Magnusson et al., 2012). MCMC is an iterative method which generates random stepwise changes to the proposed outcome of a model (in this case, the number of D. gahi) and at each step, accepts or nullifies the change with a probability equivalent to how well the change fits the model parameters compared to the previous step. The resulting sequence of accepted or nullified changes (i.e., the 'chain') approximates the likelihood distribution of the model outcome. The MCMC of the
depletion models were run for $1,000,000$ iterations; the first 1000 iterations were discarded as burn-in sections (initial phases over which the algorithm stabilizes); and the chains were thinned by a factor of 10 to reduce serial correlation (only every tenth iteration was retained). For each model three chains were run; one chain initiated with the parameter values obtained from optimizing equation (4) in the given model version, one chain initiated with these parameters $\times 2$, and one chain initiated with these parameters $\times 1 / 4$.

The estimate of D. gahi numbers on the final day of a time series is calculated as the numbers N of the depletion start days discounted for natural mortality during the intervening period, and subtracting cumulative catch also discounted for natural mortality (CNMD). Taking for example a two-depletion period:

$$
\begin{align*}
\mathrm{N}_{\text {final day }}= & \mathrm{N} 1_{\text {start day } 1} \times \mathrm{e}^{-\mathrm{M}(\text { final day }- \text { start day } 1)} \text {) } \\
& +\mathrm{N} 2 \text { start day } 2 \times \mathrm{e}^{-\mathrm{M}(\text { final day }- \text { start day } 2)} \\
& -\mathrm{CNMD}_{\text {final day }} \tag{5}
\end{align*}
$$

where

CNMD $_{\text {day } 1}=0$
CNMD $_{\text {day } x} \quad=$ CNMD $_{\text {day } x-1} \times \mathrm{e}^{-\mathrm{M}}+\mathrm{C}_{\text {day } \mathrm{x}-1} \times \mathrm{e}^{-\mathrm{M} / 2}$
$\mathrm{N}_{\text {final day }}$ is then multiplied by the expected individual weight of D. gahi on the final day to give biomass. Expected individual weight is calculated using generalized additive models (GAM) applied to the time series of daily average individual sizes. Daily average individual sizes are obtained from mantle lengths measured in-season by observers, and also derived from in-season commercial data as the proportion of product weight that vessels reported per market size category. Observer mantle lengths are scientifically precise, but restricted to 1-2 vessels at any one time that may or may not be representative of the entire fleet. Commercially proportioned mantle lengths are relatively imprecise, but cover the entire fishing fleet. Therefore, both sources of data were used. Daily average individual weights were calculated by averaging observer size samples and commercial size categories where observer data were available, otherwise only commercial size categories.

The likelihood distribution of final day biomass was computed by drawing random normal values with mean and standard deviation from the GAM calculation for individual biomass on the final day, multiplying these values by random draws of $\mathrm{N}_{\text {final day }}$ from equation (5) applied to the $\mathrm{N}_{\text {start }}$ outputs of the MCMC, and iterating the process for $6 \times$ the number of MCMC outputs. Maximum likelihood of the final day biomass was defined as the peak of the likelihood histogram with 1000 -tonne intervals.

Stock assessment Data

The pre-season survey caught its highest concentrations of D. gahi on the last day; inshore of the Loligo Box around $51.3^{\circ} \mathrm{S} 57.8^{\circ} \mathrm{W}$. A few light concentrations of D. gahi were also caught in the Beauchêne sub-area, but the overall distribution suggested that most D. gahi had not yet out-migrated (Figure 1 and Winter et al., 2013). This was corroborated by water temperatures being colder than usual for the
time of year (A. Arkhipkin, FIFD, personal communication). In-season catches were strongly polarized towards either the Beauchêne sub-area (south of $52.5^{\circ} \mathrm{S}$ and west of $58.5^{\circ} \mathrm{W}$): 34.9% of D. gahi catch and 31.7% of effort, or north of $51.5^{\circ} \mathrm{S}: 64.8 \%$ of D. gahi catch and 67.5% of effort. Less than 1% of catch or effort occurred throughout the central part of the Loligo Box (Figure 2). Given this strong partition, sub-areas north and south of $52^{\circ} \mathrm{S}$ were depletion-modelled separately.

Between 2 and 16 vessels fished in the commercial season on any day (median $=16$; Figure 3), for a total of 782 vessel-days. These vessels reported daily catch totals to the FIFD and electronic logbook data that included trawl times, positions, and product weight by market size categories.

Three FIFD observers were deployed on three vessels in the fishery for a total of 65 observer-days. Throughout the 53 days of the season, 5 days had no observer covering, 31 days had 1 observer covering, and 17 days had two observers covering. Each observer sampled an average of 426 D. gahi daily, and reported their maturity stages, sex, and lengths to 0.5 cm .

Figure 1. Spatial distribution of D. gahi $1^{\text {st }}$-season pre-season survey catches, colour-scaled to catch weight (maximum $=14.8$ tonnes). Sixty catches are represented. The 'Loligo Box' fishing zone, as well as the $52^{\circ} \mathrm{S}$ parallel delineating the boundary between north and south assessment sub-areas, are shown in gray.

Figure 2 [below]. Spatial distribution of D. gahi $1^{\text {st }}$-season commercial catches, colour-scaled to catch weight (maximum $=31.1$ tonnes). 2552 catches were taken during the season. The 'Loligo Box' fishing zone, as well as the $52{ }^{\circ} \mathrm{S}$ parallel delineating the boundary between north and south assessment sub-areas, are shown in gray.

Commercial, 24/02-17/04 2013

Group arrivals / depletion criteria

Start and end days of depletions - following arrivals of new D. gahi groups - were judged primarily with reference to daily changes in CPUE, with additional information from sex proportions, maturity, and average individual D. gahi sizes. CPUE was calculated as metric tonnes of D. gahi caught per vessel per day. Days were used rather than trawl hours as the basic unit of effort. Commercial vessels do not trawl standardized duration hours, but rather durations that best suit their daily processing requirements. An effort index of days is therefore more consistent. Daily average individual D. gahi sizes were expressed as weight (kg), converted from mantle lengths using the length-weight relationship $\mathrm{W}=\alpha \cdot \mathrm{L}^{\beta}$ (Froese, 2006). Lengthweight measurements were not taken during this season's pre-season survey, so the relationship was inferred from data of the two preceding $1^{\text {st }}$ seasons. A Monte Carlo test determined that the length-weight relationship was significantly different between
$1^{\text {st }}$ season 2011 and $1^{\text {st }}$ season 2012; therefore their data were averaged. The resulting optimized relationship used for $1^{\text {st }}$ season 2013 was:
weight $(\mathrm{kg}) \quad=0.2115716 \times$ length $(\mathrm{cm})^{2.1627141} / 1000$

Figure 3. Daily total D. gahi catch and effort distribution by assessment sub-area north (green) and south (purple) of the $52^{\circ} \mathrm{S}$ parallel in the Loligo $1^{\text {st }}$ season 2013. The season was open from February $24^{\text {th }}$ (chronological day 55) to April $17^{\text {th }}$ (chronological day 107). As many as 16 vessels fished per day north of $52^{\circ} \mathrm{S}$; as many as 14 vessels fished per day south of 52° S. As much as 615 tonnes D. gahi was caught per day north of $52^{\circ} \mathrm{S}$; as much as 414 tonnes D. gahi was caught per day south of $52^{\circ} \mathrm{S}$.

The D. gahi data and CPUE time series showed considerable variability throughout the season. Three days in the north and three days in the south were identified that most plausibly represented the onset of separate depletions (Figures 4 and 5).

- The first in-season depletion north was identified on day 62 ($3^{\text {rd }}$ March), with a strong increase in CPUE over 2 days (Figure 4), a strong increase in the proportion of females from the day before (Figure 5), and a slight peak in average
commercial weights from continuous-increasing 2 days before to continuousdecreasing 5 days after (Figure 5).
- The second in-season depletion north was identified on day $74\left(15^{\text {th }}\right.$ March) as the culmination of an uneven increase in CPUE over 5 days (Figure 4), an increase in the proportion of females from the day before (Figure 5), and a small but continuous increase in average commercial weights over 8 days.
- The third in-season depletion north was identified on day 91 ($1^{\text {st }}$ April), with a strong increase in CPUE from the day before (the highest north CPUE of the season, Fig. 4), a strong increase in the proportion of females from the day before (Fig. 5), and an increase over 4 days in average commercial weights (Fig. 5).
- The first in-season depletion south was identified on day $76\left(17^{\text {th }}\right.$ March $)$, which was the first day that CPUE exceeded 25 tonnes vessel-day ${ }^{-1}$ by more than 3 vessels fishing (Figure 4).
- The second in-season depletion south was identified on day 86 ($27^{\text {th }}$ March), which was the first day of higher CPUE after 4 days of decrease and 1 day of no fishing (Figure 4).
- The third in-season depletion south was identified on day 97 ($7^{\text {th }}$ April), which had the highest CPUE since day 86; and in particular following 3 days of decrease bracketed by 2 days of no fishing (Figure 4).

Figure 4. CPUE in metric tonnes per vessel per day, by assessment sub-area north (green) and south (purple) of the $52^{\circ} \mathrm{S}$ parallel. Circle sizes are proportioned to the numbers of vessels fishing. Data from consecutive days are joined by line segments. Broken gray bars indicate days 62,74 , and 91 , identified as the start of in-season depletion or immigration north. Solid gray bars indicate days 76,86 , and 97 , identified as the start of in-season depletion south.

Figure 5 [Next page]. Top graph: Average individual D. gahi weights (kg) per day from commercial size categories. $2^{\text {nd }}$ graph: Average individual D. gahi weights (kg) by sex per day from observer sampling. $3^{\text {rd }}$ graph: Proportions of female D. gahi per day from observer sampling. Bottom graph: avg. maturity value by sex per day from observer sampling. Males: triangles, females: squares, unsexed: circles. North sub-area: green, south sub-area: purple. Data from consecutive days are joined by line segments. Broken gray bars indicate days 62 , 74, and 91, identified as the start of in-season depletion north. Solid gray bars indicate days 76,86 , and 97 , identified as the start of in-season depletion south.

Depletion models

The different versions of the depletion model (simultaneous or sequential; with or without hyper-parameters) were optimized in R code for the north and south subareas. Outcomes and optimization details are shown in Appendix 1.

In the north sub-area, MCMC of all versions revealed that the depletion model stabilized in two alternate states: low catchability coefficient q with corresponding high N values, and high q with low N (Figure A2.1). The low q state corresponded to N values in excess of 5 billion D. gahi, which was unrealistic and therefore considered a spurious optimization. Parameters corresponding to $\mathrm{q} \leq 0.0005$ (see horizontal line through the top graph of Figure A2.1) were excluded from calculating the likelihood distribution of the stock. With this constraint, all model versions gave plausible outputs of the in-season biomass depletion (Table A1.1), showing seasonend maximum likelihood estimates ranging from 4500 tonnes (model version C and D) to 15,500 tonnes (model version B) (see Figure A1.1). Model version D (final peak only, no hyper-parameters) was selected for having the narrowest 1 standard deviation range of the season-end likelihood distribution: $18,767-2834=15,933$ (Fig. A1.1).

Expected individual weight on the final day (day 107) was $46.2 \pm 2.3 \mathrm{~g}$ (Figure A3.1). The resulting likelihood distribution of D. gahi biomass in the north sub-area on day 107 is shown in Figure 6 (equivalent to Fig. A1.1-D), with maximum likelihood and 95% confidence interval centred on the maximum likelihood of:
$\mathrm{B}_{\mathrm{N} \text { day } 107}=4500$ tonnes $\sim 95 \% \mathrm{CI}[1721-35,161]$ tonnes

North - day 107

Figure 6 [Previous page]. Likelihood distribution of D. gahi biomass in the north sub-area on day 107 (April $17^{\text {th }}$). The maximum likelihood is centred on 4500 tonnes.

In the south sub-area, no model versions that fitted data to the end of the season (day 107, or alternatively, day 104; excluding the extra days) gave plausible outputs. The CPUE time series from day 97 onwards showed considerable variability but no effective depletion towards the end (Figure 4), and could therefore not be fit realistically by any model parameters (Figure A1.2). Instead, the south sub-area was depletion-modelled to the end of the $2^{\text {nd }}$ depletion period, ending on day 95 (Figure 4). Among model versions to day 95, period-end maximum likelihood estimates ranged from 2500 tonnes (model version D4) to 4500 tonnes (model version A4) (see Figure A1.2). Model version D4 (final peak only, no hyper-parameters) was selected for having the narrowest 1 standard deviation range of the period-end likelihood distribution: 10,599-1373 = 9226 (Figure A1.2). Expected individual weight on day 95 was $25.7 \pm 1.1 \mathrm{~g}$ (Figure A3.1).

South - day 107

Figure 7. Likelihood distribution of D. gahi biomass in the south sub-area on day 107 (April 17^{th}). The maximum likelihood is centred on 3500 tonnes.

Biomass at the end of the second depletion period south was extrapolated to the end of the season by the CPUE ratio of the end of the season over the end of the second depletion period. End of the season was defined from day 102 onwards, i.e.,
the last 3 days of the regular season plus the extra days. Variability of this ratio was estimated by randomly sampling with replacement the vessels that took catches over the season end days, then calculating the ratio of these vessels' CPUE vs. the day- 95 CPUE, and multiplying by 1 day- 95 biomass value drawn randomly from the day- 95 biomass distribution (Figure A1.2-D4). The randomization was iterated for the number of units in the day- 95 biomass distribution; > 1,000,000×. The resulting likelihood distribution of D. gahi biomass in the south sub-area on day 107 is shown in Figure 7, with maximum likelihood and 95% confidence interval centred on the maximum likelihood of:

$$
\begin{align*}
\mathrm{B}_{\mathrm{S} \text { day } 107} & =\mathrm{B}_{\mathrm{S} \text { day } 95} \times \mathrm{CPUE}_{\text {day }[102-107]} / \mathrm{CPUE}_{\text {day } 95} \\
& =3500 \text { tonnes } \sim 95 \% \mathrm{CI}[941-34,506] \text { tonnes } \tag{9}
\end{align*}
$$

Escapement biomass

Escapement biomass was defined as the aggregate biomass of D. gahi at the end of the season (day 107; April $17^{\text {th }}$) for the north and south sub-areas combined (equations $8+9$). The north and south sub-area biomasses are assumed to be independent and therefore the aggregate was calculated by adding the respective north and south likelihood distributions in random order. The likelihood distribution of the aggregate escapement biomass is shown in Figure 8. Because both north and south likelihood distributions were strongly right-skewed (Figures 6 and 7), the maximum likelihood of the escapement biomass is substantially higher than the sum of the north and south maximum likelihoods.
$\mathrm{B}_{\text {Total day } 107} \quad=\mathrm{B}_{\mathrm{N} \text { day } 107}+\mathrm{B}_{\mathrm{S} \text { day } 107}$

$$
\begin{equation*}
=13,500 \text { tonnes } \sim 95 \% \mathrm{CI}[5341-55,116] \text { tonnes } \tag{10}
\end{equation*}
$$

The risk of the fishery, defined as the proportion of the escapement biomass distribution below the conservation limit of 10,000 tonnes (Agnew et al., 2002; Barton, 2002), was equal to 10.15%.

Immigration

D. gahi immigration during the season was inferred as the difference between D. gahi biomass at the end of the pre-season survey (Winter et al., 2013) and D. gahi biomass at the end of the commercial season (escapement biomass) plus catch. The likelihood distribution of this difference was calculated by repeated iterations of drawing a random value from the escapement biomass distribution (equation 10), adding the season catch, and subtracting a random draw from the likelihood distribution of the pre-season survey biomass:

$$
\begin{align*}
\mathrm{B}_{\text {Season Immigration }} & =\mathrm{B}_{\text {Total day } 107}+\mathrm{C}_{\text {Season }}-\mathrm{B}_{\text {Survey end }} \\
& =13,500[5341-55,116]+19,908-5333[4143-6661] \\
& =28,500 \text { tonnes } \sim 95 \% \mathrm{CI}[19,868-69,845] \text { tonnes } \tag{11}
\end{align*}
$$

Note that this represents, more specifically, the biomass resulting from immigration rather than the biomass that immigrated; it is not taken into account that the squid
would have been smaller on the date they entered the fishing zone and subsequently grew. However, in-season natural mortality is taken into account through the CNMD factor (equations 5 and 6). By this estimate, in-season immigration represents 85% of the D. gahi biomass to have been present in the fishing zone in the $1^{\text {st }}$ season of 2013: $28,500 /(13,500+19,908)=0.853$.

Figure 8. Likelihood distribution of D. gahi biomass at the end of the season, April $17^{\text {th }}$. Distribution outcomes less than the biomass escapement limit of 10,000 tonnes are shaded dark gray. Cumulative likelihood is shown as a solid blue curve. The broken blue line indicates the cumulative likelihood of less than 10,000 tonnes escapement biomass: 10.15%.

References

Agnew, D.J., Baranowski, R., Beddington, J.R., des Clers, S., Nolan, C.P. 1998. Approaches to assessing stocks of Loligo gahi around the Falkland Islands. Fisheries Research 35:155-169.

Agnew, D. J., Beddington, J. R., and Hill, S. 2002. The potential use of environmental information to manage squid stocks. Canadian Journal of Fisheries and Aquatic Sciences, 59: 1851-1857.

Arkhipkin, A.I., Middleton, D.A.J., Barton, J. 2008. Management and conservation of a shortlived fishery resource: Loligo gahi around the Falkland Islands. American Fisheries Society Symposium 49:1243-1252.

Barton, J. 2002. Fisheries and fisheries management in Falkland Islands Conservation Zones. Aquatic Conservation: Marine and Freshwater Ecosystems, 12: 127-135.

DeLury, D.B. 1947. On the estimation of biological populations. Biometrics 3:145-167.
Froese, R. 2006. Cube law, condition factor and weight-length relationships: history, metaanalysis and recommendations. Journal of Applied Ichthyology, 22: 241-253.

Gamerman, D., Lopes, H.F. 2006. Markov Chain Monte Carlo. Stochastic simulation for Bayesian inference. 2nd edition. Chapman \& Hall/CRC.

Magnusson, A., Punt, A., Hilborn, R. 2012. Measuring uncertainty in fisheries stock assessment: the delta method, bootstrap, and MCMC. Fish and Fisheries DOI: 10.1111/j.1467-2979.2012.00473.x

Patterson, K.R. 1988. Life history of Patagonian squid Loligo gahi and growth parameter estimates using least-squares fits to linear and von Bertalanffy models. Marine Ecology Progress Series 47:65-74.

Roa-Ureta, R.H. 2011. CatDyn: Fishery Stock Assessment by Catch Dynamic Models. R package version 1.0-3.

Roa-Ureta, R. 2012. Modelling in-season pulses of recruitment and hyperstabilityhyperdepletion in the Loligo gahi fishery around the Falkland Islands with generalized depletion models. ICES Journal of Marine Science, 69: 1403-1415.

Roa-Ureta, R., Arkhipkin, A.I. 2007. Short-term stock assessment of Loligo gahi at the Falkland Islands: sequential use of stochastic biomass projection and stock depletion models. ICES Journal of Marine Science 64:3-17.

Rosenberg, A.A., Kirkwood, G.P., Crombie, J.A., Beddington, J.R. 1990. The assessment of stocks of annual squid species. Fisheries Research 8:335-350.

Winter, A. 2012a. Loligo gahi stock assessment, second season 2011. Technical Document, Falkland Islands Fisheries Department.

Winter, A. 2012b. Loligo gahi stock assessment, first season 2012. Technical Document, Falkland Islands Fisheries Department.

Winter, A. 2012c. Loligo stock assessment, second season 2012. Technical Document, Falkland Islands Fisheries Department.

Winter, A., Jürgens, L., Monllor, A. 2013. Loligo stock assessment survey, 1 st season 2013. Technical Document, Falkland Islands Fisheries Department.

Appendix

(A.1) Evaluation of different versions of the depletion model.

Table A1.1. Optimized numbers of D. gahi at depletion end, catchability coefficients, and hyper-parameters of the different versions of the depletion model (versions B and D don't fit hyper-parameters; the hyper-parameters are 1 by default) tested in the north sub-area.

Sub- area		Model version	N (billions) Depletion end	Catchability coefficient	Hyper-parameters	
N	A	all 3 peaks, hyper-parameters	0.133	$1.86 \cdot 10^{-3}$	0.954	0.630
N	B	end-day: 107 all 3 peaks, no hyper-parameters	0.328	$1.36 \cdot 10^{-3}$	1	1
N	C	end-day: 107 final peak only, hyper-parameters	0.085	$5.37 \cdot 10^{-3}$	0.843	0.981
N	Dend-day: 107 final peak only, no hyper-parameters end-day: 107	0.153	$2.44 \cdot 10^{-3}$	1	1	

Figure A1.1 [below]. Left: Daily estimated catch numbers (black points) and expected catch numbers (red lines) from depletion model versions applied to the north sub-area (see Table A1.1). Broken gray bars: days 62, 74, and 91, identified as the start days of depletion north. Right: Likelihood distribution of D. gahi biomass at the end-day of the depletion computed by MCMC with the parameters of the corresponding model. Plot bars $=1000$ tonnes each. Bars shaded gray are within ± 1 normal standard deviation of the maximum likelihood (because the distributions tended to be skewed, calculated as [.3174 to 1] of the points < maximum likelihood, and [0 to .6826] of the points > maximum likelihood).

Table A1.2. Estimated numbers of D. gahi at depletion end, catchability coefficients, and hyper-parameters of the different versions of the depletion model (versions B and D don't fit hyper-parameters; the hyper-parameters are 1 by default) tested in the south sub-area. Numbered versions of the same letter have the same basic structure (single or multiple peaks; hyper-parameters or not, but differences in some of the data implemented.

Subarea	Model version		$\begin{gathered} \mathrm{N} \text { (billions) } \\ \text { Depletion end } \\ \hline \end{gathered}$	Catchability coefficient	Hyper-parameters		
			Effort		Abundance		
S	A	all 3 peaks, hyper-parameters end-day: 107		0.069	$4.71 \cdot 10^{-3}$	0.567	0.220
S	A2	all 3 peaks, hyper-parameters end-day: 104	0.057	$4.74 \cdot 10^{-3}$	0.584	0.232	
S	A3	$1^{\text {st }} \& 2^{\text {nd }}$ peak, hyper-parameters end-day: 104	0.094	$2.89 \cdot 10^{-3}$	0.648	0.149	
S	A4	$1^{\text {st }} \& 2^{\text {nd }}$ peak, hyper-parameters end-day: 95	0.009	$4.54 \cdot 10^{-3}$	0.594	0.226	
S	B	all 3 peaks, no hyper-parameters end-day: 107	0.396	$2.34 \cdot 10^{-3}$	1	1	
S	B4	$1^{\text {st }} \& 2^{\text {nd }} \text { peak }$ no hyper-parameters end-day: 95	0.009	$5.95 \cdot 10^{-3}$	1	1	
S	C	final peak only, hyper-parameters end-day: 107	0.034	$5.01 \cdot 10^{-3}$	0.531	0.189	
S	C2	final peak only, hyper-parameters end-day: 104	0.000	$4.51 \cdot 10^{-3}$	0.535	0.118	
S	D	final peak only, no hyper-parameters end-day: 107	> 10	$3.07 \cdot 10^{-6}$	1	1	
S	D4	$2^{\text {nd }}$ peak only, no hyper-parameters end-day: 95	0.009	$4.21 \cdot 10^{-3}$	1	1	

Figure A1.2 [below]. Left: Daily estimated catch numbers (black points) and expected catch numbers (red lines) from depletion model versions applied to the south sub-area (see Table A1.2). Solid gray bars: days 76, 86, and 97, identified as the start days of depletion south. Right: Likelihood distribution of D. gahi biomass at the end-day of the depletion computed by MCMC with the parameters of the corresponding model. Plot bars $=1000$ tonnes each. Bars shaded gray are within ± 1 normal standard deviation of the maximum likelihood (because the distributions tended to be skewed, calculated as [.3174 to 1] of the points < maximum likelihood, and [0 to .6826] of the points > maximum likelihood). Bar plots are truncated to a maximum of 100,000 tonnes, and correspondingly the upper limit of the gray shaded section may be off the plot. Note that not all model versions in Table A1.2 or included in the figure; only the ones that showed stable and plausible outcomes in the original optimization or the MCMC calculation.

(A.2) MCMC restrictions.

Figure A2.1 [above]. Markov Chain Monte Carlo iteration from the north sub-area depletion model (version D), showing the two alternating 'states' of low or high catchability coefficient q (top graph), with corresponding high or low N abundance (bottom graph). Horizontal gray line on the top graph shows the $\mathrm{q}=0.0005$ threshold line used to reject the low q state. Red dots on both graphs indicate the respective optimized values.
(A.3) Expected individual D. gahi weights calculated from generalized additive models (GAM) of the daily observer measurements and average vessel market size categories throughout the season.

Figure A3.1. Daily average D. gahi weights (black points) and 95% confidence intervals of GAMs (black lines) of seasonal trend in average individual weight. Star symbols indicate the expected average weights on the modelled depletion period end days: $\mathrm{Wt}_{\mathrm{N} \text { day } 107}=46.2 \pm 2.3$ g (top), $\mathrm{Wt}_{\mathrm{S} \text { day } 95}=25.7 \pm 1.1 \mathrm{~g}, \mathrm{Wt}_{\mathrm{S} \text { day } 104}=23.2 \pm 1.0 \mathrm{~g}, \mathrm{Wt}_{\mathrm{S} \text { day } 107}=16.8 \pm 2.0 \mathrm{~g}$ (bottom).

