February bottom trawl survey biomasses of fishery species in **Falkland Islands** waters, 2010-2023

2023-05 SA-

Ramos JE, Winter A

Fisheries Department Directorate of Natural Resources Falkland Islands Government Stanley, Falkland Islands

May 2023

For citation purposes this publication should be referenced as follows:

Ramos JE, Winter A (2023) February bottom trawl survey biomasses of fishery species in Falkland Islands waters, 2010–2023. SA–2023–05. Fisheries Department, Directorate of Natural Resources, Falkland Islands Government, Stanley, Falkland Islands. 80 pp.

© Crown Copyright 2023

No part of this publication may be reproduced without prior permission from the Falkland Islands Government-Fisheries Department.

Acknowledgements

We thank the captains and crews of the commercial fishing vessels, and the scientific observers of the Falkland Islands Fisheries Department (FIFD) that facilitated and assisted in catch and biological data collection. Lise Fournier-Carnoy and Toni Trevizan provided valuable comments that improved this report. Cover photo credits: J.E. Ramos (top left), Toni Trevizan, FIFD (top right).

Distribution: Public Domain

Reviewed and approved on 2 May 2023 by:

Andrea Clausen Director of Natural Resources Falkland Islands

Table of Contents

1. Summary	1
2. Introduction	2
3. Methods	4
3.1. Trawl stations and biological sampling	4
3.2. Abundance calculations	5
4. Results	9
4.1. Trawls	9
4.2. Abundance, distribution and size structure	9
4.2.1. Argentine shortfin squid (Illex argentinus)	12
4.2.2. Banded whiptail grenadier (Coelorinchus fasciatus)	16
4.2.3. Common hake (Merluccius hubbsi)	20
4.2.4. Hoki (Macruronus magellanicus)	24
4.2.5. Kingclip (Genypterus blacodes)	28
4.2.6. Patagonian squid (<i>Doryteuthis gahi</i>)	32
4.2.7. Red cod (Salilota australis)	36
4.2.8. Rock cod (Patagonotothen ramsayi)	40
4.2.9. Southern blue whiting (Micromesistius australis australis)	44
4.2.10. Southern hake (<i>Merluccius australis</i>)	48
4.2.11. Toothfish (Dissostichus eleginoides)	52
5. Discussion	55
7. References	59
Appendix I. February surveys summary	65
Appendix II. February surveys catches	66
Appendix III. February survey biomass trends	68
Appendix IV. Species distribution during February 2023	69
Appendix V. Argentine shortfin squid inter-annual distribution	70
Appendix VI. Banded whiptail grenadier inter-annual distribution	71
Appendix VII. Common hake inter-annual distribution	72
Appendix VIII. Hoki inter-annual distribution	73
Appendix IX. Kingclip inter-annual distribution	74
Appendix X. Patagonian squid inter-annual distribution	75
Appendix XI. Red cod inter-annual distribution	76
Appendix XII. Rock cod inter-annual distribution	77

Appendix XIII. Southern blue whiting inter-annual distribution	78
Appendix XIV. Southern hake inter-annual distribution	79
Appendix XV. Toothfish inter-annual distribution	80

February bottom trawl survey biomasses of fishery species in Falkland Islands waters, 2010–2023

1. Summary

Survey biomass assessments of 11 commercial stocks (Argentine shortfin squid, banded whiptail grenadier, common hake, hoki, kingclip, Patagonian squid, red cod, rock cod, southern blue whiting, southern hake, and toothfish) were carried out in Falkland Islands waters. The assessments were based on catch data of 1,540 bottom trawls taken during the February parallel groundfish and calamari pre-season surveys from 2010, 2011, and 2015 to 2023.

Rock cod, red cod, and southern hake had statistically significant declining trends in biomass between 2010 and 2023. The biomasses of rock cod, red cod, and southern hake in 2023 were only 8%, 40%, and 24% of their biomasses in 2010, respectively. Banded whiptail grenadier, hoki, southern blue whiting, and toothfish had declining trends from 2010 to 2019–2020, with subsequent biomass increase since 2021, but these patterns were not significant. Only the common hake had a significant increase in biomass from 2010 to 2023.

Most stocks assessed in Falkland Islands waters are targeted across several nations' Exclusive Economic Zones, and for some stocks the Falkland Islands contribute a small proportion of the total shared catch in the Southwest Atlantic and Southeast Pacific. Declines in biomass of some of these stocks may also be in part due to fishing pressure outside Falkland Islands waters. However, for some stocks the Falkland Islands contribute a major proportion of the total shared catch, and management decisions made by the Falkland Islands Fisheries Department are important for those stocks, e.g., rock cod and red cod.

In February 2023, the highest densities of the Argentine shortfin squid, common hake, kingclip, red cod, and rock cod were to the north-west in Falkland Island waters. The highest densities of southern blue whiting were detected to the north-east. Banded whiptail grenadier, hoki, southern hake, and toothfish were mainly aggregated to the south-west. Patagonian squid were caught around Falkland Islands waters but mainly to the south.

2. Introduction

The Falkland Islands shelf is located within the Patagonian large marine ecosystem, one of the most productive fishing areas in the world (Arkhipkin et al. 2012). The Patagonian large marine ecosystem is comprised of a southern temperate ecosystem in the north and a sub-Antarctic ecosystem in the south, divided by a boundary that runs from the south-west to the north-east through the Falkland Islands (Boltovskoy 1999). The temperate ecosystem lies within waters of subtropical origin, transported onto the shelf by the Brazil Current and mixed with temperate shelf waters. Several productive zones are revealed in this ecosystem, mainly due to the existence of tidal mixing oceanographic fronts, as well as seasonal fronts originating from cold fresh water inflows into the Strait of Magellan. The sub-Antarctic ecosystem lies within waters of sub-Antarctic origin transported onto the shelf by the Falkland Current (Peterson & Whitworth 1989). The Falkland Current diverges from the main stream of the Antarctic Circumpolar Current in the Drake Passage and turns northwards. The Falkland Current splits at the continental slope south of the Falkland Islands into a weak branch and a stronger branch that flow around the west and east of the Islands, respectively (Bianchi et al. 1982). These oceanographic features affect the distribution and abundance of marine species; for instance, Argentine shortfin squid (*Illex argentinus*) and hoki (*Macruronus magellanicus*) migrate to frontal zones for feeding and back to non-frontal zones for spawning (Agnew 2002). In contrast, migrations of deep-water fish such as toothfish (*Dissostichus eleginoides*) into the shelf are favoured by intrusions of sub-Antarctic waters (Laptikhovsky et al. 2008; Arkhipkin & Laptikhovsky 2010).

Squids and fishes around the Falkland Islands have been targeted by international fishing fleets over decades. However, catch data by species only started to be recorded systematically from the year 1987 (Falkland Islands Government 1989). Total catches reached a maximum of 462,487 t in 2015, in part due to the unusual large intrusion of *I. argentinus* in Falkland Islands waters from April to May 2015 (Winter 2015) that resulted in record catches (332,862 t) for this species that year (Falkland Islands Government 1989, 2023a).

Finfish license allocations in the Falkland Islands used to be set by Total Allowable Effort (TAE) calculated as a function of the catchability of an index species that represents the main target of the fishery. This approach works under the assumption of consistent relationships among catch, effort, and biomass. The first index species for finfish TAE was southern blue whiting (*Micromesistius australis australis*). However, with declining catches of

southern blue whiting and increasing catches of rock cod (*Patagonotothen ramsayi*), the index species was re-examined (Payá et al. 2010) and switched in 2011 from southern blue whiting to rock cod in order to set effort allocation. Catches of rock cod decreased since 2010 (Falkland Islands Government 2023a; Ramos & Winter 2022a) whereas catches of common hake (*Merluccius hubbsi*) increased, and reached a maximum catch in 2022 (Falkland Islands Government 2023a). The use of an index species to manage all Falkland Islands commercial species was thus considered unreliable, and the Falkland Islands Government mandated assessing each individual commercial stock. An important step to achieve this goal is to estimate the abundance and distribution of each commercial stock in the Falkland Islands Conservation Zones (FICZ and FOCZ) based on commercial and scientific surveys.

The Falkland Islands Fisheries Department (FIFD) has carried out parallel groundfish and calamari (*Doryteuthis gahi*) pre-season surveys every February since 2010, except for 2012, 2013, and 2014. The groundfish surveys are conducted along the north, west and southwest of Falkland Islands waters. The calamari pre-season surveys are conducted along the *'Loligo Box'* to the east of the Falkland Islands. The original objective of these surveys was to provide a synchronous biomass estimate of rock cod on the entire Falklands fishing grounds (Winter et al. 2010), which has since been expanded to provide information on other commercial stocks. It is noted, however, that Falkland Islands waters represent only part of the range for most stocks examined, and for some migratory stocks February is not a time of peak abundance, i.e. common hake (Arkhipkin et al. 2015), kingclip (*Genypterus blacodes;* Arkhipkin et al. 2012), and southern blue whiting (Barabanov 1982). Stations to the southwest of the FICZ have also not been sampled equally in all years, which may influence biomass estimates for stocks that occur in that area during February, such as banded whiptail grenadier (*Coelorinchus fasciatus*), hoki, southern blue whiting, and toothfish.

This report summarizes catch data jointly from the groundfish survey and the calamari pre-season survey, to estimate the biomass of key stocks in Falkland Islands waters since 2010. Previous index species (southern blue whiting and rock cod), and all species of commercial value are included in this report.

3. Methods

3.1. Trawl stations and biological sampling

Concurrent groundfish and calamari pre-season research surveys were carried out during February 2010–2011 and 2015–2023 on board of chartered fishing trawlers to cover the Falkland Islands fishing zone (Fig. 1). All trawls were bottom trawls; GPS latitude, GPS longitude, net vertical opening, trawl door spread, and trawl speed were recorded on the ship's bridge during the progress of each trawl.

On both surveys, all species from the catch of each trawl station were sorted by FIFD scientific personnel and the vessel's factory crew. FIFD scientific personnel recorded the total catch of each species assessed by a combination of weighing on an electronic balance to the nearest 0.01 kg and factory production records. Random samples of up to 100 individuals of each species were measured to the lowest 1 cm for finfish and to the lowest 0.5 cm for squids. Dorsal mantle length was measured for Argentine shortfin squid and Patagonian squid (*Doryteuthis gahi*). Total length was measured for common hake, kingclip, red cod (*Salilota australis*), rock cod, southern blue whiting, southern hake (*Merluccius australis*), and toothfish. Pre-anal length was measured for banded whiptail grenadier and hoki. In this report, catches and length frequencies were assessed for eleven species that represent important commercial targets in the Falkland Islands and other nations' fishing zones (Table I; Appendix I).

The duration of each trawl was approximately 60 min on the bottom during groundfish surveys, and 120 min on the bottom during calamari pre-season surveys. Characteristics of the trawl nets, trawl performance, and biological sampling during groundfish and calamari pre-season surveys can be consulted in detail in Arkhipkin et al. (2010, 2011, 2019), Brickle & Laptikhovsky (2010), Gras et al. (2015, 2016, 2017, 2018), Winter et al. (2011, 2015, 2016, 2017, 2018, 2019, 2020, 2021, 2022, 2023), Randhawa et al. (2020), and Trevizan et al. (2021, 2022, 2023). These surveys were designed to be consistent in the number and position of stations across years. However, there were variations in the number of stations mainly to the south-west of the FICZ for specific purposes of the February 2018 and 2020 groundfish surveys (Gras et al. 2018; Randhawa et al. 2020). In February 2022, a total of 42 stations were conducted instead of the usual > 80 stations (Trevizan et al. 2022) due to the survey being shortened because of COVID-19 quarantine requirements of the vessel's crew.

Table I. Species assessed in groundfish and calamari pre-season surveys in Falkland Islands waters during February 2010–2011 and 2015–2023. Geographic distributions taken from http://www.fao.org/fishery/species/search/en

Common name	Scientific name	Distribution		
Argentine shortfin squid	Illex argentinus	Southwest Atlantic: Brazil, Uruguay, Argentina,		
		Falkland Islands.		
Banded whiptail grenadier	Coelorinchus fasciatus	Southwest Atlantic: Brazil, Uruguay, Argentina,		
		Falkland Islands.		
		Southern Pacific: Chile, Australia, New Zealand.		
		Southern Indian: Africa, Australia.		
Common hake	Merluccius hubbsi	Southwest Atlantic: Brazil, Uruguay, Argentina,		
		Falkland Islands.		
Hoki	Macruronus magellanicus	Southwest Atlantic: Argentina, Falkland Islands.		
		Southeast Pacific: Chile.		
Kingclip	Genypterus blacodes	Southwest Atlantic: Brazil, Uruguay, Argentina,		
		Falkland Islands.		
		Southern Pacific: Chile, Australia, New Zealand.		
Patagonian squid	Doryteuthis gahi	Southwest Atlantic: Argentina, Falkland Islands.		
		Southern Pacific: Peru, Chile.		
Red cod	Salilota australis	Southwest Atlantic: Argentina, Falkland Islands.		
		Southeast Pacific: Chile.		
Rock cod	Patagonotothen ramsayi	Southwest Atlantic: Argentina, Falkland Islands.		
Southern blue whiting	Micromesistius australis	Southwest Atlantic: Argentina, Falkland Islands.		
	australis	Southeast Pacific: Chile.		
		Southern Ocean: South Georgia, South Shetland,		
		South Orkney Islands.		
Southern hake	Merluccius australis	Southwest Atlantic: Argentina, Falkland Islands.		
		Southern Pacific: Chile, New Zealand.		
Toothfish	Dissostichus eleginoides	Southwest Atlantic: Argentina, Falkland Islands.		
		Southeast Pacific: Chile.		
		Southwest Pacific: Macquarie Island.		
		Southern Ocean: South Georgia.		

3.2. Abundance calculations

Station and catch data were recorded during the surveys, checked and uploaded to the FIFD database, from which the data were available for analyses. Trawls were excluded if

not quantifiable for the following reasons: 1) the doors did not open properly, 2) the net broke during the trawl, or 3) if the net was quickly filled with medusae, which resulted in the trawl being interrupted (Appendix I).

Biomass densities per species at each trawl station were calculated as the species catch weight divided by the trawl station area (net horizontal opening × distance covered). For calamari pre-season surveys, net horizontal opening was derived from the distance between trawl doors (Seafish 2010). For groundfish surveys, the triangulation method that derives net horizontal opening from the distance between trawl doors is unsuitable because the geometry of the net is different. Since 2016, groundfish survey net horizontal opening has instead been measured directly from Marport sensors fitted to the extremities of the survey vessel's trawl net wings. If net horizontal opening was not recorded due to failure of the Marport sensors, it was calculated from door spread, net vertical opening and trawl speed using a generalized additive model.

Yearly trawl biomass densities were extrapolated to the survey area combining the finfish zone (122,493.7 km²) and '*Loligo Box*' (31,296.9 km²), partitioned into grids of 5×5 km². Position coordinates of trawls were converted to WGS 84 projection in UTM sector 21, and extrapolation was calculated using inverse distance weighting. The basic inverse distance weighting algorithm assigns a value *u* to any grid location *x* that is the weighted average of a known scattered set of points x_i according to the inverse of the *i* points' distances from the grid location *x*:

$$u(\mathbf{x}) = \begin{cases} \frac{\sum_{i=1}^{N} w_i(\mathbf{x}) u_i}{\sum_{i=1}^{N} w_i(\mathbf{x})}, & \text{if } d(\mathbf{x}, \mathbf{x}_i) \neq 0\\ u_i, & \text{if } d(\mathbf{x}, \mathbf{x}_i) = 0 \end{cases}$$

where

$$w_i(\mathbf{x}) = \frac{1}{d(\mathbf{x}, \mathbf{x}_i)^p}$$

The power parameter p (a positive real number) adjusts the weight of points x_i as a function of distance (x, x_i) ; higher values of p put higher influence on the points x_i closest to a given interpolated point x. For this survey analysis, an empirical approach to selecting p was used running the inverse distance weighting algorithm with p values from 1 to 25 by 0.25, and for each p calculating the aggregate of log proportional differences between the empirical values of density at every trawl and the interpolation at every trawl from all other trawls. The

lowest aggregate of log proportional differences corresponded to the best p value. Because some points may be more clustered than others, an isolation parameter was assigned attributing more weight to points x_i in proportion to being further away from any other point x_i . Isolation parameters (*s*) per yearly survey were calculated as the standardized mean of distances between each point x_i and all other points x_j :

$$s(\mathbf{x}_i) = \overline{d(\mathbf{x}_i, \mathbf{x}_j)}$$

An additional weighting factor was included to adjust for trawl differences in area coverage. Survey trawls are generally standardized (60 min duration in groundfish surveys and 120 min in calamari pre-season surveys), but may be shortened on immediate notice for reasons that include unmanageably large concentrations of fish accumulating in the net. Such instances will result in the trawl being stopped just when its biomass density is maximized, rather than being stopped independently of the biomass density, and thereby create a potential bias of the density estimate at that location. For shoaling fish in sparse, highly aggregated distributions, the effect can be substantial (example for hoki; Appendix II in Ramos & Winter 2022b). However, the trawl itself is not an error record that should be invalidated and removed from the data set. To mitigate the potential bias effect, swept area of each trawl was taken as a proportional weighting parameter so that a shortened trawl covering, for example, only half as much ground would have only half as much weight. Like the isolation parameters $s(x_i)$, the area parameters $a(x_i)$ were added together and divided again by their sum to give a factor centred on 1. The revised inverse distance weighting factor is:

$$w_i(\mathbf{x}) = \left(\frac{\left(\frac{s(\mathbf{x}_i) + a(\mathbf{x}_i)}{\overline{(s(\mathbf{x}_i) + a(\mathbf{x}_i))}}\right)}{d(\mathbf{x}, \mathbf{x}_i)}\right)^p$$

Distance $d(x, x_i)$ is inherently calculated as Euclidean (straight-line) distance. However, the survey area surrounds the Falkland Islands and between two remote points a fish or ship would have to travel a real distance longer than straight-line; circumnavigating the landmass. Therefore, an axial loop was drawn through the survey area (Fig. 1), and $d(x, x_i)$ was defined as the longer of either the Euclidean distance between x and x_i , or the distance on the axial loop between its two points respectively closest to x and x_i (Winter 2019).

As an extrapolation algorithm, calculated biomass over a given area will depend on the spatial distribution of surveyed densities, not just their total or average value. Accordingly, the biomass is considered an estimate.

Fig. 1. Groundfish (blue) and calamari pre-season (red) survey areas, with axial loop (black line) used to define relative distances for the inverse distance weighting algorithm.

Uncertainty of the biomass estimate was calculated by a hierarchical bootstrap algorithm. In previous reports (e.g., Ramos & Winter 2021), the bootstrap algorithm was run over 30,000 iterations with the aim to achieve narrow confidence intervals. However, little difference in confidence intervals was found when compared with 10,000 iterations (Appendix II in Ramos & Winter 2022b). Therefore, to reduce computing time, survey trawls and their catches were first randomly re-sampled with replacement for 10,000 iterations, whereby each year's groundfish survey and parallel calamari pre-season survey were resampled separately so that both 'halves' of the survey area retained about the same relative coverage. Second, each re-sampled trawl was given a random uniform re-assignment of its coordinate position between start latitude and longitude and end latitude and longitude. Third, the isolation parameters were re-calculated for the randomized set of trawl data, and the inverse distance weighted algorithm re-applied. One iteration might thus re-sample any trawl twice or more, but each would have a slightly different position. The 95% confidence intervals of the 10,000 bootstrap iterations were used to infer uncertainty.

LOESS (span = 1.0, degree = 2) was implemented to examine changes in biomass through time from the yearly estimates.

4. Results

4.1. Trawls

A total of 1,540 bottom trawls were carried out during the February groundfish and calamari pre-season surveys from 2010–2011 and 2015–2023; a range of 79 to 97 trawls are usually carried out during groundfish surveys per year, and 52 to 61 trawls are carried out during calamari pre-season surveys per year. In 2023, a total of 84 trawls were carried out during the groundfish survey, and 61 trawls were carried out during the calamari pre-season survey, and 61 trawls were carried out during the calamari pre-season survey.

4.2. Abundance, distribution and size structure

Biomass estimates of each commercial stock assessed during the February surveys 2010–2023 are summarized in Table II, and catches during the February surveys 2010–2023 can be found in Appendix II. Biomass trends of each commercial stock assessed over the same period of time are shown in Appendix III. The density distributions of each stock during the February 2023 surveys are in Appendix IV.

Table II. Biomass calculations (t) of main commercial species during the February 2010–2011 and 2015–2023 groundfish and calamari pre-season surveys in Falkland Islands waters. The 95% confidence intervals are indicated in parentheses.

Year	Argentine shortfin squid	Banded whiptail grenadier	Common hake	Hoki	Kingclip	Patagonian squid
2010	8633.92	66622.68	9124.06	278980.21	21274.04	184615.48
	(3510.35–13384.35)	(40514.45–98311.11)	(6280.46–12219.25)	(188264.88–457666.96)	(13705.30–28607.34)	(160421.18–239516.37)
2011	9294.45	43482.30	10180.24	221132.74	41485.02	47236.55
	(6777.82–12564.25)	(20547.39–73607.37)	(8330.32–12809.67)	(172507.38–281186.26)	(28424.85–63121.38)	(39537.83–62533.45)
2015	210513.16	60434.68	15758.48	134733.17	76722.26	112296.69
	(129839.58–365643.99)	(35864.88–77202.47)	(13700.90–18213.42)	(44674.67–179592.78)	(30150.81–124958.88)	(82994.09–164421.27)
2016	201.73	34897.77	3661.91	158388.16	24782.64	41292.65
	(146.47–263.11)	(8500.93–55042.45)	(2974.25–4175.68)	(79371.74–222823.65)	(13955.05–39613.42)	(34357.75–53300.16)
2017	11830.16	36736.93	12419.11	28882.54	18831.90	182113.39
	(7412.76–18225.10)	(19596.89–43533.35)	(10191.95–15538.58)	(16801.50–38817.08)	(11873.32–28544.00)	(145101.61–234454.73)
2018	45086.43	34256.01	8534.38	141953.50	14788.92	63154.37
	(30158.94–64394.07)	(27633.27–43657.43)	(6048.05–10877.41)	(92768.34–204228.49)	(11069.78–21527.00)	(44073.52–96689.36)
2019	60076.25	21976.99	11151.32	41864.81	20869.45	214492.39
	(40113.04–93531.22)	(9186.12–36085.96)	(9483.58–14419.93)	(5779.47–166317.90)	(14764.62–28127.04)	(188175.67–259467.94)
2020	148081.91	25225.42	3340.09	75402.28	14531.98	91415.65
	(89302.24–196203.10)	(8358.90–43250.89)	(2846.51–3971.84)	(20203.23–143531.23)	(10052.06–26304.43)	(80832.08–126778.53)
2021	42780.70	68844.80	33281.79	245890.30	21216.07	119433.40
	(20466.20–68912.67)	(32834.53–85342.42)	(27502.33–40938.52)	(92470.50–431476.19)	(12901.88–35823.59)	(98119.16–165138.90)
2022	5823.75	49558.54	42420.98	144782.83	43437.30	167439.23
	(2397.40–30856.33)	(25192.54–102067.28)	(32223.84–55471.45)	(12362.55–248962.54)	(14738.11–80447.75)	(131702.50–235968.93)
2023	10483.67	34369.51	32616.58	131715.33	35880.61	190506.92
	(7614.37–15619.55)	(22666.50–46028.90)	(28532.20–39221.03)	(37696.82– 212465.82)	(18884.19–58232.85)	(156060.20–262829.20)

Table II. continued

Year	Red cod	Rock cod	Southern blue whiting	Southern hake	Toothfish
2010	95050.09	817086.43	68447.18	5096.76	9492.17
	(18335.99–158897.80)	(519306.26–1306091.27)	(25380.63–91314.04)	(3910.63–6443.37)	(7096.05–11727.84)
2011	166617.50	884741.55	154691.35	5223.77	10588.19
	(39230.31–258711.16)	(716079.56–1064218.58)	(42459.43–357267.81)	(3445.99–8095.63)	(7859.83–13377.29)
2015	106244.23	350913.41	35307.57	2961.07	3730.91
	(45278.81–160780.36)	(269667.68–432687.92)	(12197.06–80184.05)	(1750.69–4350.03)	(1359.57–4477.02)
2016	102789.02	232429.14	113986.55	1971.72	7472.12
	(28384.22–149860.74)	(177911.14–306135.45)	(25096.46–204263.77)	(1204.90–2963.73)	(5373.64–10194.34)
2017	59568.95	141469.65	54456.87	1829.09	9316.94
	(22863.35–86532.41)	(113896.56–176351.05)	(1375.47–65699.77)	(1021.33–2478.36)	(5662.92–11183.99)
2018	57422.88	90679.85	57963.36	1453.02	8633.46
	(19277.51–117355.42)	(63308.48–122537.23)	(17839.34–69597.20)	(978.54–1947.08)	(6276.48–10886.50)
2019	83005.12	45669.16	5856.24	425.70	6173.70
	(35235.62–119480.37)	(29040.32–666668.90)	(205.30–34084.93)	(88.45–577.12)	(3162.82–7794.58)
2020	21889.98	19079.02	4989.54	593.71	2499.29
	(10993.21–32014.04)	(11656.70–27065.20)	(26.73–15435.54)	(230.37–868.25)	(1621.34–3392.18)
2021	35217.39	59670.41	13567.47	1943.34	4395.03
	(22852.74–51663.11)	(45689.57–66885.68)	(3616.43–25713.15)	(919.34–2941.07)	(2825.50–4845.25)
2022	81176.73	93177.17	19200.92	920.22	3877.36
	(34162.13–129660.26)	(58753.11–131454.56)	(877.49–48977.89)	(574.62–1471.85)	(2080.95–5151.07)
2023	38861.12	64729.11	39575.05	1247.99	3350.25
	(20178.92–56206.64)	(51235.90–78204.69)	(9904.22–67656.97)	(629.48–2028.57)	(1991.62–4590.57)

4.2.1. Argentine shortfin squid (Illex argentinus)

Catches of Argentine shortfin squid were higher in groundfish surveys compared with calamari pre-season surveys in any year. On average, nearly 90% of the total Argentine shortfin squid catches were from groundfish surveys. Catches were usually below 11 t every year, except for 2015 (32 t) and 2020 (18 t) (Fig. 2; Appendix II). The maximum biomass was estimated in 2015 (210,513 t) whereas the lowest biomass was estimated for 2016 (202 t). The second lowest biomass was estimated for 2022 with 5,824 t, and below average biomass was calculated for 2023 with 10,484 t (Fig. 2; Table II). Biomass did not have a significant interannual trend for the period 2010 to 2023 (Appendix III).

In 2023, this species was distributed to the north-west of West Falkland, with the highest densities near the limit of the FICZ (2,284 kg/km²; Fig. 3). This may be an indication of patches of higher abundance beyond the west limit of FICZ at the time of the surveys, just before this species starts migrating into Falkland Islands waters. Across years, the Argentine shortfin squid was mainly distributed through the north of west and East Falkland, with the highest density in the time series reported to the north of East Falkland during 2015 (74,426 kg/km²; Appendix V).

Length frequency histograms show a range of sizes of *I. argentinus* from 5 cm to 36.5 cm across years. Two length-groups were detected every year. The modal dorsal mantle length of the smaller group was nearly 9.5 cm, and the modal dorsal mantle length of the larger group ranged from 18 cm to 25 cm. In 2023, the main length-group was detected at about 25 cm dorsal mantle length, with females being larger than males (Fig. 4).

Fig. 2. Catch (t), and mean biomass (t) \pm 95% confidence intervals of the Argentine shortfin squid (*Illex argentinus*) during the February 2010–2011 and 2015–2023 groundfish and calamari pre-season surveys in Falkland Islands waters.

Fig. 3. Distribution and abundance of the Argentine shortfin squid (*Illex argentinus*) calculated from the February 2023 groundfish and calamari pre-season surveys in Falkland Islands waters.

Fig. 4. Length-frequency distribution of Argentine shortfin squid (*Illex argentinus*) during the February groundfish and calamari pre-season surveys in Falkland Islands waters. Blue and yellow bars are superimposed.

4.2.2. Banded whiptail grenadier (Coelorinchus fasciatus)

Patterns of catch and biomass across years were variable, likely due to the small catches and patchy distributions of this species, which also reflects in wide biomass confidence intervals (Table II). Catches of banded whiptail grenadier were higher in groundfish surveys compared with calamari pre-season surveys in any year, and catches ranged between 2.5 t and 8 t. On average, approximately 90% of the total banded whiptail grenadier catches were from groundfish surveys across years (Fig. 5; Appendix II). The biomass of banded whiptail grenadier ranged from 22,977 t in 2019 to 66,845 t in 2021, with no evident trend through time. The biomass in February 2023 was calculated at 34,370 t (Fig. 5; Table II; Appendix III).

Banded whiptail grenadier was distributed to the south-west of West Falkland during 2023, with the maximum density calculated at 2,489 kg/km² (Fig. 6). Across years, there was a consistent pattern of distribution to the south-west of West Falkland with the highest density calculated for 2011 (9,127 kg/km²; Appendix VI).

Length frequency histograms of banded whiptail grenadier show a range of sizes from 2 cm to 20 cm pre-anal length. One mode was evident every year and remained constant through time, i.e. 9–10 cm pre-anal length for females and for males, with females often being larger than males (Fig. 7).

Fig. 5. Catch (t), and mean biomass (t) \pm 95% confidence intervals of banded whiptail grenadier (*Coelorinchus fasciatus*) during the February 2010–2011 and 2015–2023 groundfish and calamari preseason surveys in Falkland Islands waters.

Fig. 6. Distribution and abundance of banded whiptail grenadier (*Coelorinchus fasciatus*) calculated from the February 2023 groundfish and calamari pre-season surveys in Falkland Islands waters.

Fig. 7. Length frequency of banded whiptail grenadier (*Coelorinchus fasciatus*) during the February groundfish and calamari pre-season surveys in Falkland Islands waters. Blue and yellow bars are superimposed.

4.2.3. Common hake (Merluccius hubbsi)

Common hake were mainly caught in groundfish surveys through the time series, averaging 99% of the surveys' total common hake catch. Catches reached a maximum in 2023 (8.6 t); the second highest catch was reported in 2021 (8.1 t), whereas it remained below 3.2 t in all other years (Fig. 8; Appendix II). The biomass of common hake remained under 16,000 t every February from 2010 to 2020. Biomass increased in 2021 (33,282 t), reached its highest value in 2022 with 42,420 t, and was calculated at 32,617 t in 2023 (Fig. 8; Table II). There was a statistically significant increase in biomass from 2010 to 2023 (Appendix III).

In 2023, common hake was mainly distributed to the north-west of West Falkland with the highest density estimated at 2,983 kg/km² (Fig. 9). Migration of common hake into Falkland Islands waters is likely driven by specific oceanographic conditions, and it takes place in February when the surveys are being conducted. Hence, changes in oceanographic conditions may result in year-to-year abundance variability for this species during February in Falkland Islands waters. Across years, high densities were detected to the north-west offshore or near the limit of the FICZ, with the highest density calculated for 2021 (3,393 kg/km²; Appendix VII).

Length frequency histograms show a wide range of common hake sizes, from 13 cm to 95 cm total length, across the time series. Animals > 60 cm total length have been rare since 2015. In 2023, two length-groups were detected. The modal length of the smaller length-group was 31–32 cm total length for females and males, and the modal length of the larger length-group was nearly 40 cm total length for females; a small number of males were also detected in the larger length-group with no evident modal length (Fig. 10).

Fig. 8. Catch (t), and mean biomass (t) \pm 95% confidence intervals of common hake (*Merluccius hubbsi*) during the February 2010–2011 and 2015–2023 groundfish and calamari pre-season surveys in Falkland Islands waters.

Fig. 9. Distribution and abundance of common hake (*Merluccius hubbsi*) calculated from the February 2023 groundfish and calamari pre-season surveys in Falkland Islands waters.

Fig. 10. Length frequency of common hake (*Merluccius hubbsi*) during the February groundfish and calamari pre-season surveys in Falkland Islands waters. Blue and yellow bars are superimposed.

4.2.4. Hoki (Macruronus magellanicus)

Hoki catch was nearly evenly split between February groundfish and calamari preseason surveys in 2010, 2011, and 2015, 2016. However, hoki catches in groundfish surveys were dominant since 2017 at an average of 97% of the surveys' total hoki catch (Fig. 11; Appendix II). The highest catch was reported in 2010 (79.7 t), and the lowest catch in 2016 (3.7 t). The highest biomass in the time series was estimated for 2010 (278,980 t), and the biomass in 2023 was the fourth lowest (131,715 t; Fig. 11; Table II). There was no significant trend in biomass from 2010 to 2023 (Appendix III).

In 2023, hoki was found to the south-west edge of the FICZ with the highest density calculated at 22,240 kg/km² (Fig. 12). The distribution of hoki was patchy and variable from year to year. From 2010 to 2015, hoki occurred over the entire FICZ and FOCZ but its distribution was localized mainly to the south-west of West Falkland from 2016 to 2023 (Appendix VIII); the highest density in the time series occurred to the south-west limit of the FICZ in 2021 (146,193 kg/m²).

Length frequency histograms show a range of sizes from 11 cm to 46 cm pre-anal length across the time series. The largest animals (≥ 35 cm pre-anal length) were less frequent since 2018. Several length-groups were present each year but these cannot be identified with certainty given the overlap in sizes. In 2023, the modal length of the largest length-group was about 25 cm pre-anal length for females and for males. Smaller length-groups were detected at about 21 cm pre-anal length, and at 15 cm pre-anal length (Fig. 13).

Fig. 11. Catch (t), and mean biomass (t) \pm 95% confidence intervals of hoki (*Macruronus magellanicus*) during the February 2010–2011 and 2015–2023 groundfish and calamari pre-season surveys in Falkland Islands waters.

Fig. 12. Distribution and abundance of hoki (*Macruronus magellanicus*) calculated from the February 2023 groundfish and calamari pre-season surveys in Falkland Islands waters.

Fig. 13. Length frequency of hoki (*Macruronus magellanicus*) during the February groundfish and calamari pre-season surveys in Falkland Islands waters. Blue and yellow bars are superimposed.

4.2.5. Kingclip (Genypterus blacodes)

Most kingclip were caught in groundfish surveys (average of 95% of the total kingclip catch across years) compared with calamari pre-season surveys. The highest catch of kingclip occurred in 2015 with 14.7 t, whereas the lowest catch in the time series occurred in 2022 with 2.8 t. The second highest catch of kingclip was reported for 2023 with 10.8 t (Fig. 14; Appendix II). Kingclip biomass was usually < 45,000 t every February, except for February 2015 that had the highest biomass (76,722 t) in the time series. In 2023, the biomass of kingclip was calculated at 35,881 t, the fourth highest in the time series (Fig. 14; Table II). There was no statistically significant trend in biomass from 2010 to 2023 (Appendix III).

In 2023, the highest density (13,214 kg/km²) occurred to the north-west near the limit of the FICZ (Fig. 15). Throughout the time series, kingclip was dispersed around the FICZ and FOCZ, except for the south-east. The highest density in the time series was 32,777 kg/km² to the north-west in 2015 (Appendix IX).

Length frequency histograms show a wide range of kingclip sizes across the time series, from 23 cm to 153 cm total length. In 2023, two length-groups were detected. The smaller group-length with modal length at about 58 cm total length, and the larger group with modal length at about 74 cm total length; females were larger than males (Fig. 16).

Fig. 14. Catch (t), and mean biomass (t) \pm 95% confidence intervals of kingclip (*Genypterus blacodes*) during the February 2010–2011 and 2015–2023 groundfish and calamari pre-season surveys in Falkland Islands waters.

Fig. 15. Distribution and abundance of kingclip (*Genypterus blacodes*) calculated from the February 2023 groundfish and calamari pre-season surveys in Falkland Islands waters.

Fig. 16. Length frequency of kingclip (*Genypterus blacodes*) during the February groundfish and calamari pre-season surveys in Falkland Islands waters. Blue and yellow bars are superimposed.

4.2.6. Patagonian squid (Doryteuthis gahi)

The highest catch of Patagonian squid was obtained for 2023 (555 t). On average, 98% of Patagonian squid catches were from the calamari pre-season surveys across years (Fig. 17; Appendix II). The highest biomass in the time series was estimated in 2019 with 214,492 t. In 2023, the biomass was estimated at 190,507 t (Fig. 17; Table II). There was no statistically significant trend in biomass from 2010 to 2023 (Appendix III).

Patagonian squid were mainly found to the south and south-east of East Falkland. In 2023, the maximum density was 40,207 kg/km² to the south of East Falkland (Fig. 18). This was the highest density throughout the time series (Appendix X).

Length frequency histograms show a wide range of Patagonian squid sizes, from 2.5 cm to 36 cm, across the time series. Two length-groups were evident only in some years. In 2023, the modal length of the smaller length-group was at about 7.5 cm dorsal mantle length and the modal length of the larger length-group was at about 11 cm dorsal mantle length (Fig. 19).

Fig. 17. Catch (t), and mean biomass (t) \pm 95% confidence intervals of the Patagonian squid (*Doryteuthis gahi*) during the February 2010–2011 and 2015–2023 groundfish and calamari preseason surveys in Falkland Islands waters.

Fig. 18. Distribution and abundance of the Patagonian squid (*Doryteuthis gahi*) calculated from the February 2023 groundfish and calamari pre-season surveys in Falkland Islands waters.

Fig. 19. Length frequency of the Patagonian squid (*Doryteuthis gahi*) during the February groundfish and calamari pre-season surveys in Falkland Islands waters. Blue and yellow bars are superimposed.

4.2.7. Red cod (Salilota australis)

Red cod was predominantly caught in groundfish surveys (average of 90% of the total red cod catch across years) compared with calamari pre-season surveys. Catch declined from 2011 and reached its lowest value in 2020 (3.7 t); however, there was a consecutive increase in catches since 2020 (Fig. 20; Appendix II). The biomass of red cod had its highest value in 2011 (166,618 t). Biomass decreased the following years to 21,890 t in 2020, the lowest biomass calculated in the time series. In 2023, the biomass of red cod was estimated at 38,861 t (Fig. 20; Table II). There was a statistically significant decline in biomass from 2010 to 2020 (Appendix III).

In 2023, the highest densities occurred near the north-west limit of the FICZ (13,356 kg/km²), although there were also high densities to the south-west limit of the FICZ (Fig. 21). Through the time series, red cod was found mainly along the west of West Falkland, and the highest density in the time series was 38,175 kg/km² in 2016 (Appendix XI).

Length frequency histograms show a wide range of red cod sizes across the time series (i.e. 4–85 cm total length) due to the presence of several length-groups. Poor recruitment to the fishery occurred in 2010, 2018, and since 2020; individuals recently recruited to the fishery had modal lengths between 15 cm and 19 cm total length across years. In 2023, three length-groups were detected. The modal length of the smaller length-group was at about 19 cm total length, the medium length-group was at about 26 cm total length, and the larger group was at about 40 cm (Fig. 22).

Fig. 20. Catch (t), and mean biomass (t) \pm 95% confidence intervals of red cod (*Salilota australis*) during the February 2010–2011 and 2015–2023 groundfish and calamari pre-season surveys in Falkland Islands waters.

Fig. 21. Distribution and abundance of red cod (*Salilota australis*) calculated from the February 2023 groundfish and calamari pre-season surveys in Falkland Islands waters.

Fig. 22. Length frequency of red cod (*Salilota australis*) during the February groundfish and calamari pre-season surveys in Falkland Islands waters. Blue and yellow bars are superimposed.

4.2.8. Rock cod (Patagonotothen ramsayi)

In February 2010, rock cod catches were higher in the groundfish survey compared with the calamari pre-season surveys, with an average of 66% of the surveys total rock cod catch being from the groundfish survey. However, since 2011 the majority of rock cod catches (average of 75%) were reported from calamari pre-season surveys. The highest catch of rock cod was reported in 2011 (249.4 t) and the lowest catch in 2020 (10.9 t). A total of 36.2 t of rock cod were caught in 2023 (Fig. 23; Appendix II). Rock cod biomass declined from 2010 (817,086 t) to 2023 (64,729 t) (Fig. 23; Table II; Appendix III).

In 2023, rock cod occurred in high densities (9,764 kg/km²) to the north-west limit of the FICZ (Fig. 24). Rock cod had a patchy distribution around the Falkland Islands throughout the time series (Appendix XII), and the highest density in the time series was calculated for 2011 to the north-east of East Falkland (602,147 kg/km²).

Sizes of rock cod ranged widely throughout the time series (i.e. 4–43 cm). In some years, at least two length-groups were detected. In 2023, modal length was 16 cm total length for a smaller length-group and 25 cm total length for a larger length-group. Most rock cod sampled in 2023 belonged to the smaller length-group (Fig. 25).

Fig. 23. Catch (t), and mean biomass (t) \pm 95% confidence intervals of rock cod (*Patagonotothen ramsayi*) during the February 2010–2011 and 2015–2023 groundfish and calamari pre-season surveys in Falkland Islands waters.

Fig. 24. Distribution and abundance of rock cod (*Patagonotothen ramsayi*) calculated from the February 2023 groundfish and calamari pre-season surveys in Falkland Islands waters.

Fig. 25. Length frequency of rock cod (*Patagonotothen ramsayi*) during the February groundfish and calamari pre-season surveys in Falkland Islands waters. Blue and yellow bars are superimposed.

4.2.9. Southern blue whiting (Micromesistius australis australis)

Southern blue whiting was mainly caught in the calamari pre-season surveys compared with the groundfish surveys, at an average of 94% of the surveys' total southern blue whiting catch across years. The highest catch was reported in 2016 (79.4 t) and the lowest catch in 2022 (3.3 t). In 2023, a total of 32.4 t of southern blue whiting were caught (Fig. 26; Appendix II). The highest biomass was estimated for 2011 (154,691 t), and the lowest biomass was estimated for 2020 (4,990 t). However, biomass increased since 2020, and it was 39,575 t in 2023 (Fig. 26; Table II). There was no significant trend in biomass from 2010 to 2023 (Appendix III).

In 2023, southern blue whiting occurred mainly to the north-east of the FICZ, with the highest density calculated at 15,439 kg/km² (Fig. 27). Throughout the time series, southern blue whiting occurred mainly to the south of the FICZ and to the north-east of East Falkland, with the highest density calculated for 2016 to the south of East Falkland (203,954 kg/km²; Appendix XIII).

Southern blue whiting was caught in small numbers through the time series. Total length ranged from 6 cm to 72 cm through the time series. A small length-group with total length at 23–25 cm was present across years. In 2023, a total of 2,622 individuals were sampled, and mainly a small group with modal length at 24 cm total length was present. Larger individuals were also caught at around 40 cm and 50 cm total length but in small numbers (Fig. 28).

Fig. 26. Catch (t), and mean biomass (t) \pm 95% confidence intervals of southern blue whiting (*Micromesistius australis australis*) during the February 2010–2011 and 2015–2023 groundfish and calamari pre-season surveys in Falkland Islands waters.

Fig. 27. Distribution and abundance of southern blue whiting (*Micromesistius australis australis*) calculated from the February 2023 groundfish and calamari pre-season surveys in Falkland Islands waters.

Fig. 28. Length frequency of southern blue whiting (*Micromesistius australis australis*) during the February groundfish and calamari pre-season surveys in Falkland Islands waters. Blue and yellow bars are superimposed.

4.2.10. Southern hake (Merluccius australis)

The highest catch in the time series was reported in 2010 (822 kg) and the lowest catch was reported in 2019 (51 kg); a total of 259 kg of southern hake were caught in 2023. On average, nearly 91% of the surveys' total southern hake catch was from the groundfish survey (Fig. 29; Appendix II). Biomass estimates of southern hake have remained below 6,000 t every February since 2010, with the lowest biomass estimated for 2019 (426 t). The fourth lowest biomass was estimated for 2023 with 1,248 t (Fig. 29; Table II). There was a statistically significant decrease in biomass from 2010 to 2023 (Appendix III).

In 2023, the highest densities of southern hake were detected to the south-west of West Falkland (333 kg/km²; Fig. 30), a consistent pattern throughout the time series. The highest density of southern hake was reported in 2011 (923 kg/km²; Appendix XIV).

Southern hake is caught in small numbers in Falkland Islands waters; hence the small number of samples. Length frequency histograms show range of sizes from 29 cm to 106 cm throughout the time series (Fig. 31).

Fig. 29. Catch (t), and mean biomass (t) \pm 95% confidence intervals of southern hake (*Merluccius australis*) during the February 2010–2011 and 2015–2023 groundfish and calamari pre-season surveys in Falkland Islands waters.

Fig. 30. Distribution and abundance of southern hake (*Merluccius australis*) calculated from the February 2023 groundfish and calamari pre-season surveys in Falkland Islands waters.

Fig. 31. Length frequency of southern hake (*Merluccius australis*) during the February groundfish and calamari pre-season surveys in Falkland Islands waters. Blue and yellow bars are superimposed.

4.2.11. Toothfish (*Dissostichus eleginoides*)

Adult toothfish are caught mainly using longline; therefore, the information provided in this report is not representative of the adult portion of the toothfish population.

The proportion of toothfish catches between groundfish and calamari pre-seasons surveys was variable across years but on average it was 51% for calamari pre-season surveys and 49% for groundfish surveys. The maximum total catch was reported in 2017 (2.5 t) followed by 2011 (2.4 t); the lowest catch was reported in 2022 (331 kg). The catch in 2023 was 1.3 t (Fig. 32; Appendix II). The February biomass of toothfish has remained below 11,000 t since 2010, with the lowest biomass estimated in 2020 (2,499 t). In 2023, the biomass of toothfish was estimated at 3,350 t (Fig. 32; Table II). There was no significant trend in biomass from 2010 to 2023 (Appendix III).

In 2023, the highest densities of toothfish were detected across the south-west of West Falkland (340 kg/km²; Fig. 33). Toothfish had a patchy distribution around the Falkland Islands through the time series, with the highest density reported in 2018 to the west and south-west of West Falkland (902 kg/km²; Appendix XV).

Length frequency histograms show that toothfish had a range of sizes from 5 cm to 115 cm throughout the time series, with several length-groups present. A small group had modal length at 30–36 cm total length in several years. In 2023, the main group had a modal length at 44 cm total length; the small numbers of smaller individuals suggest that recruitment was low in recent years (Fig. 34).

Fig. 32. Catch (t), and mean biomass (t) \pm 95% confidence intervals of toothfish (*Dissostichus eleginoides*) during the February 2010–2011 and 2015–2023 groundfish and calamari pre-season surveys in Falkland Islands waters.

Fig. 33. Distribution and abundance of toothfish (*Dissostichus eleginoides*) calculated from the February 2023 groundfish and calamari pre-season surveys in Falkland Islands waters.

Fig. 34. Length frequency of toothfish (*Dissostichus eleginoides*) during the February groundfish and calamari pre-season surveys in Falkland Islands waters. Blue and yellow bars are superimposed.

5. Discussion

The biomasses of three commercial stocks calculated from the February surveys had statistically significant declines from 2010 to 2023: rock cod, red cod, and southern hake,

whereby the lowest biomass levels of these three species were reached in 2019 or 2020. Rock cod had the greatest decrease in biomass; it was calculated that its biomass in 2023 (64,729 t) was only 8% of its biomass in 2010 (817,086 t). Southern hake biomass in 2023 (1,248 t) was 24% of its biomass in 2010 (5,097 t). The declining February trend of southern hake is consistent with its biomass decrease calculated from July surveys in 2017 (524 t) and 2020 (169 t); however, Falkland Islands fisheries contribute a minor proportion of the southern hake shared catch with Argentina (Ramos & Winter 2022c). The biomass of red cod had a significant decline from 2010 to 2023, and its biomass in 2023 (38,861 t) was 40% of its biomass in 2010 (95,050 t). Other stocks had declining trends from 2010 to 2019–2020, with subsequent biomass increase since 2021 although none of the trends from 2010 to 2023 were statistically significant, i.e., banded whiptail grenadier, hoki, southern blue whiting, and toothfish. However, it must be noted that southern blue whiting biomass in 2023 (39,575 t) was only 58% of its biomass in 2010 (68,447 t), whereas toothfish biomass in 2023 (3,350 t) was 35% of its biomass in 2010 (9,492 t). Only the common hake had a significant increase in biomass in recent years, i.e., 2021 (33,282 t), 2022 (42,421 t), and 2023 (32,617 t), with the biomass in 2010 (9,124 t) being 28% of the biomass in 2023.

Commercial rock cod catches have decreased significantly since 2010 (Ramos & Winter 2022a), and the proportion of rock cod discard has increased from an annual average of 14% over the period 2010–2015 to 73% from 2016 to 2022, with up to 94% discards reported in 2021 (Falkland Islands Government *unpublished data*). Rock cod are discarded in the commercial fishery because of their small size and most of these small individuals have not reproduced during their lifetime. Survival rates of discards are low, and the future growth and biomass of these individuals is therefore wasted. Discarding may also result in less certain stock assessments because discarded catch is often not reported accurately (Guillen et al. 2018). Currently, rock cod is a permitted catch in finfish vessels and apart from a TAC there are no other conservation measures in any Falkland Islands fisheries (Falkland Islands Government 2023b), including the Patagonian squid fishery that contributes most rock cod catches in Falkland Islands waters since 2016 (Ramos & Winter 2022a). Lack of conservation measures against the incidental catch and discard of juvenile individuals can affect the state of a fishery stock, and recruitment to the fishery (Gilman et al. 2020). The declining biomass trend from 2005

to 2019 based on commercial data (Winter 2020), and with the declining trend of CPUE since 2011, which has stabilized at low levels since 2020 (Ramos & Winter 2022a). An apparent change in its geographic distribution inferred from increasing out-of-zone catches may also have contributed to the decrease in abundance of this stock in Falkland Islands waters from 2016 to 2018 (Winter 2021, Table A1).

The recent stabilization of hoki and southern blue whiting abundance may be a consequence of the establishment of a no-fishing area to the south and south-west of the Falkland Islands from 1 July to 15 October since 2007, mandated for S-licensed vessels targeting both southern blue whiting and hoki stocks (Falkland Islands Government 2023a). Both stocks may have further benefited from reduced fishing pressure because of the S-licence not being used since 2017. However, it must be noted that hoki stock assessment using data-poor methods such as LBB and OCOM also found a declining biomass trend from 1987 to 2018, with the biomass calculated for 2018 being only 13% of the biomass calculated for 1987, and with stabilization at low biomass levels in recent years (Ramos & Winter 2019).

Toothfish biomass estimated in February surveys has remained below 11,000 t since 2010, with the lowest biomass estimate in 2020 (2,499 t). However, these findings represent only a portion of the population given that trawlers rarely catch adult toothfish. A shift in fishing behaviour by finfish vessels (A–, G–, and W– licences), i.e., vessels fishing deeper and further south in the FICZ to capture ridge scaled rattail *Macrourus carinatus*, led the finfish fishery to catch more toothfish in 2016–2017. Catches declined again since 2018 to levels comparable with catches in 2011 (Falkland Islands Government 2023a). The pattern of toothfish biomass from the February surveys is consistent with the negative trends in biomass detected using CASAL on commercial data (SSB₂₀₂₁/SSB₀ = 0.484; Skeljo et al. 2022).

Most stocks assessed in this study are targeted across several nations' Exclusive Economic Zones. For some stocks, the Falkland Islands contribute only a small proportion of the total shared catch in the Southwest Atlantic and Southeast Pacific. For instance, the Falkland Islands contributed nearly 8% and 10% of the 10-year average catch of southern blue whiting and hoki respectively, shared with Argentina and Chile (Ramos & Winter 2022d, 2023). Biomass declines of these stocks may in part be due to high fishing pressure outside Falkland Islands waters. However, for some stocks the Falkland Islands contribute a major

proportion of the total shared catch. For example, the Falkland Islands contribute 61% and 84% of the 10-year average catch of red cod and rock cod respectively, shared with Argentina (Ramos & Winter 2022a, 2022e). Management decisions made by the FIFD are important for these stocks.

The FIFD has made efforts to search for juvenile toothfish during austral spring or summer over the last few years, by juvenile toothfish surveys (e.g., Pompert et al. 2015; Arkhipkin et al. 2017; Lee et al. 2018) or by including four inshore stations in February groundfish surveys (e.g., see Arkhipkin et al. 2019; Randhawa et al. 2020; Trevizan et al. 2021). In the February groundfish surveys, toothfish smaller than 20 cm total length (ages \leq 1) have been scarce through the time series ($n_{2010} = 0$; $n_{2011} = 60$; $n_{2015} = 237$; $n_{2016} = 57$; $n_{2017} = 109$; $n_{2018} = 0$; $n_{2019} = 1$; $n_{2020} = 2$; $n_{2021} = 26$; $n_{2022} = 0$; $n_{2023} = 0$); however, it must be noted that juvenile toothfish were not systematically searched for at least during the February 2010, 2011, 2022, and 2023 surveys. Nevertheless, higher numbers of juveniles found in the February 2015 and 2017 surveys are consistent with higher recruitment in 2015 and 2017, with persistent recruitment hotspots for newly-settled toothfish found to the north-west in the FICZ, along with opportunistic areas to the north (2016), south (2017), and north-east (2015), coinciding with the main areas of upwelling and high productivity. The state of toothfish recruitment has remained low apart from 2015 and 2017; during years of low recruitment, juvenile toothfish are largely constrained to sheltered inshore regions to the north-west of the Falkland Islands (Lee et al. 2021). Juveniles of other species are recorded and measured opportunistically, but are not currently the objective of a systematic study.

The algorithm for calculating biomass estimates was adjusted in 2022 (see Methods, and Appendices II and III in Ramos & Winter 2022b) to give more effective weighting to survey trawls that are shortened but nevertheless valid, and therefore not excluded from analyses. Shortened but valid trawls occurred in several years, and can affect biomass estimation especially of species that have strongly aggregated distributions. For example, the hoki biomass estimate was particularly high in February 2021 due to the exceptionally large catch of this species on station 3362 of the groundfish survey, which had to be ended after just 20 minutes to avoid overloading the net (Ramos & Winter 2021; Trevizan et al. 2021). This trawl was valid as the gear was not defective, and the schooling behaviour of hoki makes such a high localized density realistic, but the influence of this one trawl on the overall biomass

estimate needed to be down-weighted. An additional adjustment was applied to the February 2022 groundfish survey, which had only 42 trawl stations instead of the usual average 87 stations due to quarantine requirements. This adjustment for 2022 (only) provided a more realistic output of the biomass estimation uncertainties in shortened surveys.

7. References

- Agnew DJ (2002) Critical aspects of the Falkland Islands pelagic ecosystem: distribution, spawning and migration of pelagic animals in relation to oil exploration. Aquatic Conservation 12: 39–50.
- Arkhipkin A, Bakanev S, Laptikhovsky V (2011) Rock cod Biomass Survey 2011. Report number ZDLT1-02-2011. Fisheries Department, Directorate of Natural Resources, Falkland Islands Government, Stanley, Falkland Islands. 37 pp.
- Arkhipkin A, Brickle P, Laptikhovsky V, Winter A (2012) Dining hall at sea: feeding migrations of nektonic predators to the eastern Patagonian Shelf. Journal of Fish Biology 81: 882–902. https://doi.org/10.1111/j.1095-8649.2012.03359.x
- Arkhipkin A, Herrera D, Lee B, Boag T, Bradley K, Cockcroft K (2017) Scientific Report, Fisheries Cruise ZDLT1-01-2017. Stanley, Fisheries Department, Directorate of Natural Resources, Falkland Islands Government. 34 pp.
- Arkhipkin AI, Laptikhovsky VV, Barton AJ (2015) Biology and fishery of common hake (*Merluccius hubbsi*) and southern hake (*Merluccius australis*) around the Falkland/Malvinas Islands on the Patagonian shelf of the Southwest Atlantic Ocean. In H. Arancibia (Ed.), Hakes, Biology and Exploitation (pp. 154–184). Oxford: Wiley.
- Arkhipkin A, Lee B, Goyot L, Ramos JE, Chemshirova I, Roberts G, Costa M, Blake A (2019)
 Demersal biomass survey. Report number ZDLM3-02-2019. Fisheries Department,
 Directorate of Natural Resources, Falkland Islands Government, Stanley, Falkland Islands.
 44 pp.
- Arkhipkin AI, Laptikhovsky VV (2010) Convergence in life-history traits in migratory deepwater squid and fish. ICES Journal of Marine Science 67: 1444–1451.
- Arkhipkin A, Winter A, May T (2010) Loligo gahi Stock Assessment Survey, First Season 2010.Fisheries Department, Directorate of Natural Resources, Falkland Islands Government, Stanley, Falkland Islands. 13 pp.
- Barabanov AV (1982) Influence of hydrometeorological conditions of the Southwest Atlantic on migrations of southern blue whiting in Scotia Sea. *In:* Arkhipkin AI, Schuchert PC, Danyushevsky L (2009) Otolith chemistry reveals fine population structure and close affinity to the Pacific and Atlantic oceanic spawning grounds in the migratory southern blue

whiting (*Micromesistius australis australis*). Fisheries Research 96 : 188–194. https://doi.org/10.1016/j.fishres.2008.11.002

- Bianchi A, Massonneau M, Olevera RM (1982) Análisis estadístico de las características T–S del sector austral de la Plataforma Continental Argentina. Acta Oceanológica Argentina 3: 93–118. *In:* Arkhipkin A, Brickle P, Laptikhovsky V, Winter A (2012) Dining hall at sea: feeding migrations of nektonic predators to the eastern Patagonian Shelf. Journal of Fish Biology 81: 882–902. https://doi.org/10.1111/j.1095-8649.2012.03359.x
- Boltovskoy D (Ed.) (1999) South Atlantic Zooplankton. *In:* Arkhipkin A, Brickle P, Laptikhovsky V, Winter A (2012) Dining hall at sea: feeding migrations of nektonic predators to the eastern Patagonian Shelf. Journal of Fish Biology 81: 882–902. https://doi.org/10.1111/j.1095-8649.2012.03359.x
- Brickle P, Laptikhovsky V (2010) Rock cod Biomass Survey. Report number ZDLT1-02-2010. Fisheries Department, Directorate of Natural Resources, Falkland Islands Government, Stanley, Falkland Islands. 31 pp.
- Falkland Islands Government (1989) Fisheries Report, FIG Stanley, Fisheries Department. 45 pp.
- Falkland Islands Government (2023a) Fisheries Department Fisheries Statistics, Vol. 27, FIG Stanley, Fisheries Department. 94 pp.
- Falkland Islands Government (2023b) The fisheries (conservation and management) ordinance 2005, FIG Stanley, Fisheries Department.
- Gilman E, Perez-Roda A, Huntington T, Kennelly SJ, Suuronen P, Chaloupka M, Medley PAH (2020) Benchmarking global fisheries discards. Scientific Reports 10: 14017. https://doi.org/10.1038/s41598-020-71021-x
- Guillen J, Holmes SJ, Carvalho N, Casey J, Dorner H, Gibin M, Mannini A, Vasilakopoulos P,
 Zanzi A (2018) A Review of the European Union Landing Obligation Focusing on Its
 Implications for Fisheries and the Environment. Sustainability 10: 900.
 https://doi.org/10.3390/su10040900
- Gras M, Blake A, Pompert J, Jürgens L, Visauta E, Busbridge T, Rushton H, Zawadowski T (2015)
 Rock cod Biomass Survey. Report number ZDLT1-02-2015. Fisheries Department,
 Directorate of Natural Resources, Falkland Islands Government, Stanley, Falkland Islands.
 45 pp.
- Gras M, Pompert J, Blake A, Boag T, Grimmer A, Iriarte V, Sánchez B (2016) Finfish and Rock cod Biomass Survey. Report number ZDLT1-02-2016. Fisheries Department, Directorate of Natural Resources, Falkland Islands Government, Stanley, Falkland Islands. 72 pp.

- Gras M, Pompert J, Blake A, Busbridge T, Derbyshire C, Keningale B, Thomas O (2017) Groundfish survey. Report number ZDLT1-02-2017. Fisheries Department, Directorate of Natural Resources, Falkland Islands Government, Stanley, Falkland Islands. 83 pp.
- Gras M, Randhawa H, Blake A, Busbridge T, Chemshirova I, Guest A (2018) Groundfish survey. Report number ZDLM3-02-2018. Fisheries Department, Directorate of Natural Resources, Falkland Islands Government, Stanley, Falkland Islands. 81 pp.
- Laptikhovsky VV, Arkhipkin AI, Brickle P (2008) Life history, fishery and stock conservation of the Patagonian toothfish around the Falkland Islands. American Fisheries Society Symposium 49: 1357–1363. *In:* Arkhipkin A, Brickle P, Laptikhovsky V, Winter A (2012) Dining hall at sea: feeding migrations of nektonic predators to the eastern Patagonian Shelf. Journal of Fish Biology 81: 882–902. https://doi.org/10.1111/j.1095-8649.2012.03359.x
- Lee B, Goyot L, Ramos-Castillejos JE, Hall J, Zawadowski T (2018) Research cruise ZDLT1-12-2018. Patagonian toothfish – juvenile survey. Fisheries Department, Directorate of Natural Resources, Falkland Islands Government. Stanley, Falkland Islands. 28 pp.
- Lee B, Arkhipkin A, Randhawa HS (2021) Environmental drivers of Patagonian toothfish (*Dissostichus eleginoides*) spatial-temporal patterns during an ontogenetic migration on the Patagonian Shelf. Estuarine, Coastal and Shelf Science 259: 107473. https://doi.org/10.1016/j.ecss.2021.107473
- Payá I, Brickle P, Laptikhovsky V, Winter A (2010) Vessel Units, Allowable Effort, and Allowable Catch 2011. Fisheries Department, Directorate of Natural Resources, Falkland Islands Government, Stanley, Falkland Islands. 53 pp.
- Peterson RG, Whitworth III T (1989) The Subantarctic and Polar fronts in relation to deep water masses through the Southwestern Atlantic. Journal of Geophysical Research 94: 10817–10838. *In:* Arkhipkin A, Brickle P, Laptikhovsky V, Winter A (2012) Dining hall at sea: feeding migrations of nektonic predators to the eastern Patagonian Shelf. Journal of Fish Biology 81: 882–902. https://doi.org/10.1111/j.1095-8649.2012.03359.x
- Pompert J, Blake A, Lee B, Jones J, Zawadowski T (2015) Scientific Report, Fisheries Cruise ZDLT1-11-2015. Stanley, Fisheries Department, Directorate of Natural Resources, Falkland Islands Government. 39 pp.
- Ramos JE, Winter A (2019) Stock assessment of hoki (*Macruronus magellanicus*) in the Falkland Islands. SA–2019–WHI. Fisheries Department, Directorate of Natural Resources, Falkland Islands Government. Stanley, Falkland Islands. 47 pp.
- Ramos JE, Winter A (2021) February bottom trawl survey biomasses of fishery species in Falkland Islands waters, 2010–2021. SA–2021–05. Fisheries Department, Directorate of Natural Resources, Falkland Islands Government, Stanley, Falkland Islands. 77 pp.

- Ramos JE, Winter A (2022a) Stock assessment of rock cod (*Patagonotothen ramsayi*) in the Falkland Islands. SA–2022–PAR. Fisheries Department, Directorate of Natural Resources, Falkland Islands Government, Stanley, Falkland Islands. 48 pp.
- Ramos JE, Winter A (2022b) February bottom trawl survey biomasses of fishery species in Falkland Islands waters, 2010–2022. SA–2022–05. Fisheries Department, Directorate of Natural Resources, Falkland Islands Government, Stanley, Falkland Islands. 86 pp.
- Ramos JE, Winter A (2022c) Stock assessment of Southern hake (*Merluccius australis*) in the Falkland Islands. SA–2022–PAT. Fisheries Department, Directorate of Natural Resources, Falkland Islands Government, Stanley, Falkland Islands. 37 p.
- Ramos JE, Winter A (2022d) Stock assessment of hoki (*Macruronus magellanicus*) in the Falkland Islands. SA–2022–WHI. Fisheries Department, Directorate of Natural Resources, Falkland Islands Government, Stanley, Falkland Islands. 39 p.
- Randhawa HS, Goyot L, Blake A, Ramos JE, Roberts G, Brewin J, Evans D (2020) Cruise Report ZDLT1-02-2020: 2020 Demersal Biomass Survey. Fisheries Department, Directorate of Natural Resources, Falkland Islands Government, Stanley, Falkland Islands. 97 pp.
- Seafish (2010) Bridle angle and wing end spread calculations. Research and development catching sector fact sheet. Available at: www.seafish.org
- Skeljo F, Lee B, Winter A (2022) 2021 Stock assessment report for Patagonian toothfish (*Dissostichus eleginoides*). Fisheries Report SA-2021-TOO. Fisheries Department, Directorate of Natural Resources, Falkland Islands Government, Stanley, Falkland Islands. 44 p.
- Trevizan T, Ramos JE, Blake A, Brewin J, Büring T, Claes J, Evans D (2021) Cruise Report ZDLT1-2021-02. Demersal survey. Fisheries Department, Directorate of Natural Resources, Falkland Islands Government. Stanley, Falkland Islands. 50 pp.
- Trevizan T, Evans D, Büring T, Ramos JE, Santana-Hernandez N, Sadd D, Copping EA, Piontek R, Blake A (2022) Cruise Report ZDLT1-2022-02. Demersal survey. Fisheries Department, Directorate of Natural Resources, Falkland Islands Government. Stanley, Falkland Islands. 34 pp.
- Trevizan T, Shcherbich Z, Büring T, Ramos JE, Nicholls R, Hoyer P, Amukwaya A, Fournier-Carnoy L, Piontek R (2023) Cruise Report ZDLT1-2023-02. Demersal survey. Fisheries Department, Directorate of Natural Resources, Falkland Islands Government. Stanley, Falkland Islands. 39 pp.
- Winter A, Laptikhovsky V, Brickle P, Arkhipkin A (2010) Rock cod (*Patagonotothen ramsayi* (Regan, 1913)) stock assessment in the Falkland Islands. Fisheries Department, Directorate of Natural Resources, Falkland Islands Government, Stanley, Falkland Islands. 12 pp.

- Winter A, Davidson D, Watson M (2011) *Loligo gahi* Stock Assessment Survey, 1st Season 2011. Fisheries Department, Directorate of Natural Resources, Falkland Islands Government, Stanley, Falkland Islands. 18 pp.
- Winter A (2015) Loligo Stock Assessment, First Season 2015. Fisheries Department, Directorate of Natural Resources, Falkland Islands Government, Stanley, Falkland Islands. 28 pp.
- Winter A, Jones J, Shcherbich Z (2015) *Loligo* Stock Assessment Survey, 1st Season 2015. Fisheries Department, Directorate of Natural Resources, Falkland Islands Government, Stanley, Falkland Islands. 16 pp.
- Winter A, Zawadowski T, Shcherbich Z, Bradley K, Kuepfer A (2016) Falkland calamari Stock Assessment Survey, 1st Season 2016. Fisheries Department, Directorate of Natural Resources, Falkland Islands Government, Stanley, Falkland Islands. 19 pp.
- Winter A, Jones J, Shcherbich Z, Iriarte V (2017) Falkland calamari Stock Assessment Survey, 1st Season 2017. Fisheries Department, Directorate of Natural Resources, Falkland Islands Government, Stanley, Falkland Islands. 17 pp.
- Winter A, Iriarte V, Zawadowski T (2018) *Doryteuthis gahi* Stock Assessment Survey, 1st Season 2018. Fisheries Department, Directorate of Natural Resources, Falkland Islands Government, Stanley, Falkland Islands. 20 pp.
- Winter A (2019) Rock cod stock assessment (*Patagonotothen ramsayi*). Fisheries Department, Directorate of Natural Resources, Falkland Islands Government, Stanley, Falkland Islands.
 23 pp.
- Winter A, Zawadowski T, Tutjavi V (2019) *Doryteuthis gahi* Stock Assessment Survey, 1st Season 2019. Fisheries Department, Directorate of Natural Resources, Falkland Islands Government, Stanley, Falkland Islands. 18 pp.
- Winter A (2020) Rock cod stock assessment (*Patagonotothen ramsayi*). Fisheries Department,
 Directorate of Natural Resources, Falkland Islands Government, Stanley, Falkland Islands.
 33 pp.
- Winter A, Lee B, Arkhipkin A, Tutjavi V, Büring T (2020) 2020 1st Season Assessment Survey Falkland calamari (*Doryteuthis gahi*). ZDLY-S1-2020. Fisheries Department, Directorate of Natural Resources, Falkland Islands Government, Stanley, Falkland Islands. 16 pp.
- Winter A (2021) Rock cod (*Patagonotothen ramsayi*) stock assessment. SA–2021–PAR. Fisheries Department, Directorate of Natural Resources, Falkland Islands Government, Stanley, Falkland Islands. 29 pp.

- Winter A, Shcherbich Z, Matošević N (2021) 2021 1st Season Assessment Survey Falkland calamari (*Doryteuthis gahi*). ZDLY-S1-2021. Fisheries Department, Directorate of Natural Resources, Falkland Islands Government, Stanley, Falkland Islands. 18 pp.
- Winter A, Lee B, Shcherbich Z, Nicholls R (2022) 2022 1st Pre-season Assessment Survey Falkland calamari (*Doryteuthis gahi*). ZDLS3-S1-2022. Fisheries Department, Directorate of Natural Resources, Falkland Islands Government, Stanley, Falkland Islands. 15 pp.
- Winter A, Raczynski M, Peruzzo M (2023) 2023 1st Pre-season Assessment Survey Falkland calamari (*Doryteuthis gahi*). ZDLE1-S1-2023. Fisheries Department, Directorate of Natural Resources, Falkland Islands Government, Stanley, Falkland Islands. 17 pp.

Appendix I. February surveys summary

February groundfish (gf) and calamari pre-season (pr) surveys information. Catches per survey and combined total include Argentine shortfin squid, banded whiptail grenadier, common hake, hoki, kingclip, Patagonian squid, red cod, rock cod, southern blue whiting, and toothfish.

Year	Vessel			No. of trawls		Stations excluded		Catch (t)		
	gf	pr	gf	pr	total	gf	pr	gf	pr	total
2010	Castelo (ZDLT1)	Beagle F.I. (ZDLZ)	87	55	142	478, 501	NA	195.8	458.0	653.8
2011	Castelo (ZDLT1)	Venturer (ZDLP1)	88	58	146	NA	NA	196.7	257.4	454.1
2015	Castelo (ZDLT1)	Baffin Bay (MSPL9)	89	57	146	NA	NA	121.8	392.9	514.7
2016	Castelo (ZDLT1)	Sil (ZDLR1)	90	56	146	NA	638	87.7	206.7	294.4
2017	Castelo (ZDLT1)	Argos Vigo (ZDLU1)	90	58	148	2328	1002	48.1	254.3	302.5
2018	Monteferro (ZDLM3)	Castelo (ZDLT1)	97	59	156	143,144,156,164,183	NA	81.4	169.6	251.1
2019	Monteferro (ZDLM3)	Argos Cíes (ZDLS3)	79	52	135	240,242,244,246	25,29,37	47.0	418.7	465.6
2020	Castelo (ZDLT1)	Argos Cíes (ZDLS3)	80	59	139	NA	NA	49.9	283.9	333.8
2021	Castelo (ZDLT1)	Capricorn (ZDLY)	80	55	135	3388,3391,3392,3393	NA	76.4	348.0	424.4
2022	Castelo (ZDLT1)	Argos Cíes (ZDLS3)	42	60	102	NA	NA	46.1	445.7	491.8
2023	Castelo (ZDLT1)	Igueldo (ZDLE1)	84	61	105	NA	1174	69.4	612.6	682.0

Appendix II. February surveys catches

Catches (t) of main commercial species during the February 2010–2011, and 2015–2023 groundfish and calamari pre-season surveys in Falkland Islands waters.

Year	Argentine shortfin squid	Banded whiptail grenadier	Common hake	Hoki	Kingclip	Patagonian squid	Red cod
2010	0.88	8.05	1.31	79.78	3.24	356.76	13.54
2011	1.95	6.20	1.67	56.00	8.59	50.51	23.54
2015	31.87	6.58	3.17	26.36	14.73	186.14	21.81
2016	0.10	3.28	0.69	38.91	5.45	66.89	19.95
2017	2.48	3.97	2.94	3.69	4.26	185.23	13.82
2018	10.70	7.54	1.73	30.02	3.59	115.84	13.30
2019	9.41	2.50	2.75	7.55	4.42	386.26	13.68
2020	17.91	2.62	0.72	14.38	3.62	272.08	3.71
2021	10.31	6.53	8.15	30.83	4.79	285.54	6.04
2022	0.78	4.50	5.65	9.71	2.79	422.74	10.41
2023	3.22	5.11	8.59	14.41	10.76	554.94	11.07
Total	89.61	56.88	37.38	311.66	66.23	2882.70	150.87
Mean	8.15	5.17	3.40	28.33	6.02	262.06	13.72

Appendix II. continued

Year	Rock cod	Southern blue whiting	Southern hake	Toothfish	Total	Mean
2010	164.59	21.87	0.82	1.39	652.23	59.29
2011	249.38	52.29	0.77	2.42	453.32	41.21
2015	198.27	24.12	0.36	0.77	514.18	46.74
2016	77.31	79.36	0.25	1.75	293.94	26.72
2017	76.13	6.41	0.20	2.50	301.63	27.42
2018	35.92	29.51	0.30	1.93	250.38	22.76
2019	27.94	8.38	0.05	0.83	463.77	42.14
2020	10.98	5.10	0.10	0.49	331.71	30.16
2021	57.16	12.17	0.26	0.73	422.51	38.41
2022	30.82	3.27	0.11	0.33	491.11	44.65
2023	36.21	32.39	0.26	1.31	678.26	61.66
Total	964.71	274.86	3.47	14.46		
Mean	87.70	24.99	0.32	1.31		

Appendix III. February survey biomass trends

Biomass (t) of commercial species in February groundfish and calamari pre-season surveys during 2010-2011 and 2015-2023. LOESS smooth ± 95% confidence intervals.

Appendix IV. Species distribution during February 2023

Comparative density distribution of commercial species during the February 2023 groundfish and calamari pre-season surveys in Falkland Islands waters. Note the 100 m, 200 m, and 500 m isobaths in the bottom-right panel.

Appendix V. Argentine shortfin squid inter-annual distribution

Comparative density distribution of the Argentine shortfin squid (*Illex argentinus*) during the February 2010–2011 and 2015–2022 groundfish and calamari pre-season surveys in Falkland Islands waters.

Appendix VI. Banded whiptail grenadier inter-annual distribution

Comparative density distribution of banded whiptail grenadier (*Coelorinchus fasciatus*) during the February 2010–2011 and 2015–2023 groundfish and calamari pre-season surveys in Falkland Islands waters.

Appendix VII. Common hake inter-annual distribution

Comparative density distribution of common hake (*Merluccius hubbsi*) during the February 2010–2011 and 2015–2023 groundfish and calamari pre-season surveys in Falkland Islands waters.

Appendix VIII. Hoki inter-annual distribution

Comparative density distribution of hoki (*Macruronus magellanicus*) during the February 2010–2011 and 2015–2022 groundfish and calamari pre-season surveys in Falkland Islands waters.

Appendix IX. Kingclip inter-annual distribution

Comparative density distribution of kingclip (*Genypterus blacodes*) during the February 2010–2011 and 2015–2023 groundfish and calamari pre-season surveys in Falkland Islands waters.

Appendix X. Patagonian squid inter-annual distribution

Comparative density distribution of the Patagonian squid (*Doryteuthis gahi*) during the February 2010–2011 and 2015–2023 groundfish and calamari pre-season surveys in Falkland Islands waters.

Appendix XI. Red cod inter-annual distribution

Comparative density distribution of red cod (*Salilota australis*) during the February 2010–2011 and 2015–2022 groundfish and calamari pre-season surveys in Falkland Islands waters.

Appendix XII. Rock cod inter-annual distribution

Comparative density distribution of rock cod (*Patagonotothen ramsayi*) during the February 2010–2011 and 2015–2023 groundfish and calamari pre-season surveys in Falkland Islands waters.

Appendix XIII. Southern blue whiting inter-annual distribution

Comparative density distribution of southern blue whiting (*Micromesistius australis australis*) during the February 2010–2011 and 2015–2023 groundfish and calamari pre-season surveys in Falkland Islands waters.

Appendix XIV. Southern hake inter-annual distribution

Comparative density distribution of southern hake (*Merluccius australis*) during the February 2010–2011 and 2015–2023 groundfish and calamari pre-season surveys in Falkland Islands waters.

Appendix XV. Toothfish inter-annual distribution

Comparative density distribution of toothfish (*Dissostichus eleginoides*) during the February 2010–2011 and 2015–2023 groundfish and calamari pre-season surveys in Falkland Islands waters.

